首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

基于深度学习的车辆检测与消除方法在倾斜摄影自动三维建模中的应用

ABSTRACT第4页
摘要第5-7页
ACKNOWLEDGEMENTS第7-10页
Ⅰ. Introduction and Research Background第10-18页
    Ⅰ.1. REASONS AND SIGNIFICANCE OF DISSERTATION TOPIC:第11-14页
        Ⅰ.1.1. Problem Statement第11-13页
        Ⅰ.1.2. Motivation第13-14页
    Ⅰ.2. LITERATURE REVIEW:第14-16页
        Ⅰ.2.1. Urban 3D modeling trend第14-15页
        Ⅰ.2.2. Deep learning and object detection tendency第15页
        Ⅰ.2.3. Object removal development第15-16页
    Ⅰ.3. RESEARCH CONTENT:第16-18页
        Ⅰ.3.1. Research objectives第16页
        Ⅰ.3.2. Outline of Thesis第16-18页
Ⅱ. Three dimensional city modeling第18-29页
    Ⅱ.1. INTRODUCTION TO URBAN 3D MODELS:第19-23页
        Ⅱ.1.1. Definitions of 3D city models第19-20页
        Ⅱ.1.2. Categorization of 3D city models第20-21页
        Ⅱ.1.3. Comparison of 3D city modeling techniques第21-23页
    Ⅱ.2. CREATION OF 3D CITY MODELS:第23-25页
        Ⅱ.2.1. Data collection第23页
        Ⅱ.2.2. Data processing第23-24页
        Ⅱ.2.3. Modeling workflow第24-25页
    Ⅱ.3. APPLICATIONS OF 3D CITY MODELS:第25-27页
        Ⅱ.3.1. Safety and security applications第25-26页
        Ⅱ.3.2. Economic and leisure application第26-27页
        Ⅱ.3.3. Research and development application第27页
    Ⅱ.4. LIMITATIONS OF 3D CITY MODELS:第27-29页
Ⅲ. Car Detection using Deep Learning第29-46页
    Ⅲ.1. IMAGE CLASSIFICATION WITHCNNs:第30-37页
        Ⅲ.1.1. Genesis of CNNs and Deep Learning第31-32页
        Ⅲ.1.2. Sparse coding for image classification第32-35页
        Ⅲ.1.3. Operation Principles of Deep Learning in image classification第35-37页
    Ⅲ.2. CHOICE OF THE CLASSIFICATION APPROACH AND THE FEATURES SPACE:第37-40页
        Ⅲ.2.1. Statistical Learning Framework第37-38页
        Ⅲ.2.2. Feature Spaces Determination第38-39页
        Ⅲ.2.3. Choice of the object detection Framework第39-40页
    Ⅲ.3. DESIGN OF THE DEEP LEARNING CAR DETECTOR:第40-46页
        Ⅲ.3.1. Car Detection System Architecture第40-42页
        Ⅲ.3.2. Deep Network Training第42-44页
        Ⅲ.3.3. Deep Learning Car Detection Process第44-46页
Ⅳ. Car Removal by Exemplar Based Inpainting第46-57页
    Ⅳ.1. OBJECT REMOVAL CONTEXT:第47-51页
        Ⅳ.1.1. Introduction to object removal第47-48页
        Ⅳ.1.2. Image Inpainting challenges and applications第48-49页
        Ⅳ.1.3. Object removal techniques第49-51页
    Ⅳ.2. IMPLEMENTATION OF EXEMPLAR BASED INPAINTING CAR REMOVAL SYSTEM: 49第51-57页
        Ⅳ.2.1. Computation of the filling priority and pertinence of patches第51-53页
        Ⅳ.2.2. Texture and structure information propagation第53-54页
        Ⅳ.2.3. Car removal complete process第54-57页
Ⅴ. Experimental Results and Discussion第57-69页
    Ⅴ.1. RESULTS& EVALUATION OF THE CAR DETECTION SYSTEM:第58-62页
        Ⅴ.1.1. Car detection system experimental results第58-61页
        Ⅴ.1.2. Car detection results discussion第61-62页
    Ⅴ.2. RESULTS &EVALUATION OF THE CAR REMOVAL SYSTEM:第62-65页
        Ⅴ.2.1. Car removal system experimental results第62-64页
        Ⅴ.2.2. Car removal results discussion第64-65页
    Ⅴ.3. THREE DIMENSIONAL MODELING VALIDATION OF THE PROPOSED APPROACH:第65-69页
Ⅵ. Conclusion第69-76页
    Ⅵ.1. SUMMARY OF THE RESEARCH AND OBJECTIVES COMPLETION:第70-72页
    Ⅵ.2. CONTRIBUTIONS AND ASSESSMENT OF THE RESEARCH第72-74页
    Ⅵ.3. PERSPECTIVE WORKS第74-76页
Ⅶ. Bibliography第76-78页

论文共78页,点击 下载论文
上一篇:TOPS模式数据配准模型及其对相干性的影响研究
下一篇:一种用于实时跟踪和道路优化的网络GIS解决方案