首页--工业技术论文--电工技术论文--变压器、变流器及电抗器论文--一般性问题论文

地磁引起的电流变压器效应

ABSTRACT第5页
Chapter 1 Introduction第11-18页
    1.1 Introduction:第11页
    1.2 Transformer core saturation problems第11-16页
        1.2.1 Inrush Current第12-13页
        1.2.2 Geomagnetically Induced Currents (GICs)第13-16页
            1.2.2.1 GIC impact on transformers第13-14页
            1.2.2.2 GIC level第14-16页
    1.3 Objectives第16页
    1.4 Thesis outline第16-18页
Chapter 2 Solar Storms, GIC and Basics of Transformers第18-31页
    2.1 Introduction第18页
    2.2 Solar Storm第18-19页
    2.3 Sunspots and the Sunspot Cycle第19页
    2.4 Some Space Weather Phenomena第19-21页
        2.4.1 Solar Flare第20页
        2.4.2 CME第20-21页
        2.4.3 SPE第21页
    2.5 GICs,the Causal Factors Associated with GICs第21-22页
    2.6 Basics of Power Transformers第22-31页
        2.6.1 Introduction第22页
        2.6.2 Transformer Structure第22-23页
        2.6.3 Main Component-Winding第23页
        2.6.4 Main Component-Transformer Core第23-26页
        2.6.5 Transformer Core Materials第26-31页
Chapter 3 Effect of GICs on Transformers & Mitigation第31-56页
    3.1 Introduction第31页
    3.2 History of geomagnetic storms and GICs第31-33页
        3.2.1 March 13 th-14 th, 1989 Hydro-Quebec第32页
        3.2.2 October 19 th- November 7 th,2003-Halloween Storm第32-33页
    3.3 GIC impact on power systems第33-35页
    3.4 GIC effects on protection and control circuits第35-37页
        3.4.1 GIC effects on Relays第35-36页
        3.4.2 GIC effects on Current Transformer (CT's)第36页
        3.4.3 GIC effects on Generators第36页
        3.4.4 GIC effects on Global Positioning System (GPS)第36-37页
        3.4.5 GIC effects on Communication Systems第37页
        3.4.6 GIC effects on Circuit Breakers (CB)第37页
    3.5 GIC effects on power transformer第37-39页
        3.5.1 Introduction第37-38页
        3.5.2 Core Losses第38-39页
        3.5.3 Winding Losses第39页
    3.6 Transformer Operation with GIC第39-41页
    3.7 GIC Modeling第41-47页
        3.7.1 Introduction第41-43页
        3.7.2 Geoelectric Field Calculations第43-44页
        3.7.3 GIC calculation第44-46页
        3.7.4 GIC modeling in power systems第46-47页
    3.8 GICs Mitigation第47-54页
        3.8.1 Introduction第47-49页
        3.8.2 Disconnect at Neutral第49页
        3.8.3 Inductor at Neutral第49-50页
        3.8.4 Resistor at Neutral第50页
        3.8.5 Mitigation using Capacitor第50-51页
            3.8.5.1 Series Capacitor at Transmission Line第50-51页
            3.8.5.2 Capacitor at Neutral第51页
        3.8.6 Neutral Blocking and By-Pass Device (NBBD)第51-54页
    3.9 New Mitigation Method第54-56页
        3.9.1 Introduction第54页
        3.9.2 Ferroresonance第54-56页
Chapter 4 Steady State Magnetic Circuit Modelling for Transformers第56-72页
    4.1 Introduction第56-57页
    4.2 Simplified three-limb transformer core model第57页
    4.3 Improved three-limb transformer core model第57-61页
    4.4 Analysis of Circulation Paths of GICs in (3-Φ)Transformer Windings第61-66页
        4.4.1 Introduction第61页
        4.4.2 Y- YgTransformer Equivalent Analysis Model第61-64页
            4.4.2.1 Y-Yg Transformer connection Analysis第63页
            4.4.2.2 GIC by Y-Yg-type transformer flow path analysis regardless of load current第63-64页
        4.4.3 Yg-Δ Transformer Equivalent Analysis Model第64-66页
        4.4.4 GIC Analysis for Yg-Δ transformer第66页
    4.5 Differential Protection for Three Phase Power Transformer第66-72页
        4.5.1 Introduction第66-67页
        4.5.2 Type of Faults Encountered in Transformers第67-68页
            4.5.2.1 External Fault第67页
            4.5.2.2 Internal Fault第67-68页
        4.5.3 Effects of GICs on Transformer Differential Protection第68-69页
            4.5.3.1 Analysis the effects of GICs on the transformer after system failure第68-69页
            4.5.3.2 Effect of GIC on CT after system failure第69页
        4.5.4 The effect of the control device on the differential protection of the transformer第69-72页
            4.5.4.1 System simulation model after isolation device第69-70页
            4.5.4.2 The effect of the isolation device on the single-phase ground fault第70-72页
Chapter 5 Transformers Modeling with GIC, Results and Discussion第72-88页
    5.1 Introduction第72页
    5.2 Case 1:GIC effect on single-phase transformer第72-76页
        5.2.1 Single-Phase Transformer Circuit第72-73页
        5.2.2 Single-Phase Transformer Model第73-75页
            5.2.2.1 Case One:Normal operation第74页
            5.2.2.2 Case Two: operation with GICs第74-75页
            5.2.2.3 Case Three: Mitigate using Capacitor: two values of capacitors第75页
        5.2.3 Results Discussion第75-76页
            5.2.3.1 Case One: Normal Operation (without GICs)第75页
            5.2.3.2 Case Two: Operation with GICs第75-76页
            5.2.3.3 Case Three: Mitigation using Capacitor第76页
    5.3 GIC effects on Three-Phase Transformer第76-80页
        5.3.0 Three-Phase Transformer Circuit第76页
        5.3.1 Three-Phase Transformer Model第76-77页
        5.3.2 Analysis the Main Model第77-79页
            5.3.2.1 Normal operation (without GICs)第77页
            5.3.2.2 Mitigation GIC by using Resistor and Capacitor第77-78页
            5.3.2.3 Operation with GIC第78-79页
            5.3.2.4 Mitigation GIC using Capacitor and Resistor connected parallel第79页
        5.3.3 Discussion第79-80页
            5.3.3.1 Case one: normal operation (without GIC)第79页
            5.3.3.2 Case two: operation with GIC第79页
            5.3.3.3 Case three: mitigation method第79-80页
        5.3.4 Conclusion第80页
    5.4 Harmonic Analysis, Reactive & Active Power for Power Transformer第80-84页
        5.4.1 Conclusion第83-84页
    5.5 Differential Protection for Power Transformer第84-88页
        5.5.1 Case one at Normal Operation without Saturation第84-85页
        5.5.2 GIC on Differential Protection第85-87页
        5.5.3 Effect of Capacitor on Differential protection for Transformer with GIC第87页
        5.5.4 Discussion第87-88页
Chapter 6 Conclusion and Future Work第88-90页
    6.1 Conclusion第88-89页
    6.2 Future Work第89-90页
References第90-93页
Paper Publish第93-94页
Acknowledgement第94页

论文共94页,点击 下载论文
上一篇:不同光伏发电预测方法的性能比较
下一篇:光伏系统的最大功率点跟踪