首页--工业技术论文--自动化技术、计算机技术论文--自动化技术及设备论文--自动化元件、部件论文--发送器(变换器)、传感器论文

基于虚拟共阵扩充的互质阵列欠定DOA估计方法

摘要第5-7页
ABSTRACT第7-10页
Notation第23-25页
Chapter 1 Introduction第25-49页
    1.1 Background第25-27页
    1.2 Literature Review第27-44页
    1.3 Main Task第44-46页
    1.4 Outline and Scope of this Thesis第46-49页
Chapter 2 Array Model and Related Materials第49-67页
    2.1 Background第49页
    2.2 The Array Signal Model第49-50页
    2.3 Autocorrelation and Spectral Estimation第50-51页
    2.4 Parametric Estimation第51-52页
    2.5 Spectral Estimation第52-54页
    2.6 Sampling and Underdetermined Estimation第54-55页
    2.7 Different Array Model第55-59页
        2.7.1 Linear Arrays第55页
        2.7.2 Planar Arrays第55-57页
        2.7.3 Circular Arrays第57-58页
        2.7.4 Coprime Arrays第58-59页
    2.8 Different fields of view and frequency bands第59-66页
        2.8.1 Far Field第59-61页
        2.8.2 Near Field第61-63页
        2.8.3 Narrow Band第63-64页
        2.8.4 Wide Band第64-66页
    2.9 Chapter Summary第66-67页
Chapter 3 Popular Methods for DOA Estimation第67-81页
    3.1 Background第67页
    3.2 Classical Beamforming Method第67-69页
    3.3 MUSIC Algorithm第69-70页
    3.4 ESPRIT Algorithm第70-73页
    3.5 Genetic Algorithm第73-75页
    3.6 Particle swarm optimization (PSO) algorithm第75-76页
    3.7 Sparse Bayesian Learning Method第76-79页
    3.8 Chapter Summary第79-81页
Chapter 4 Virtual Extension exploiting Difference and Sum第81-99页
    4.1 Introduction第82-84页
    4.2 Signal Model第84-85页
    4.3 Proposed Methodology第85-93页
        4.3.1 Extension of Vitual Arrays Exploiting Difference and Sum Co-array第88-92页
        4.3.2 MUSIC based DOA estimation第92-93页
    4.4 Simulation Results第93-97页
        4.4.1 Case Ⅰ: RMSE for different SNR第94-95页
        4.4.2 Case Ⅱ: RMSE for different number of Snapshots第95页
        4.4.3 Case Ⅲ: RMSE for different number of Sources第95-97页
    4.5 Chapter Summary第97-99页
Chapter 5 Novel Array Structure using Translocation,Axes Rotation and Compression第99-119页
    5.1 Introduction第99-102页
    5.2 Signal Model第102-104页
    5.3 Proposed Methodology第104-113页
        5.3.1 Conventional Coprime Array Configuration第104-105页
        5.3.2 Proposed Coprime Array Configuration第105-108页
        5.3.3 The Difference Co-array of Proposed Method第108-110页
        5.3.4 Interpolation with Iterative Power Factorization第110-112页
        5.3.5 MUSIC based DOA estimation第112-113页
    5.4 Simulation Results第113-117页
        5.4.1 Case Ⅰ: RMSE for different SNR第114-115页
        5.4.2 Case Ⅱ: RMSE for different number of Snapshots第115页
        5.4.3 Case Ⅲ: RMSE for different number of Sources第115-116页
        5.4.4 Number of Lags vs Number of Sensors第116-117页
    5.5 Chapter Summary第117-119页
Chapter 6 Novel Array Structure unifying Trio Subarray and FOD第119-153页
    6.1 Introduction第119-124页
    6.2 Signal Model第124-125页
    6.3 Proposed Methodology第125-145页
        6.3.1 Conventional Coprime Array Configuration第126-127页
        6.3.2 Proposed Coprime Array Configuration第127-134页
        6.3.3 The Fourth Order Difference Co-Array of Proposed Method第134-142页
        6.3.4 Sparse Baysian Learning Based DOA Estimation第142-145页
    6.4 Simulation Results第145-149页
        6.4.1 Case Ⅰ: RSME for Different SNR第145-147页
        6.4.2 Case II: RMSE for Different Number Of Snapshots第147页
        6.4.3 Case Ⅲ: RMSE for Different Number of Sources第147-148页
        6.4.4 Case Ⅳ: RMSE for Lower Angular DOA Estimation第148页
        6.4.5 Number of Lags vs Number of Sensors第148-149页
    6.5 Chapter Summary第149-153页
Chapter 7 Novel Array Structure comprising Triplet Coprime Array第153-191页
    7.1 Introduction第153-155页
    7.2 Signal Model第155-157页
    7.3 Proposed Methodology第157-183页
        7.3.1 Proposed Coprime Array Configuration第157-166页
        7.3.2 The Second Order Difference Co-Array of Proposed Method第166-172页
        7.3.3 MUSIC DOA Estimation第172-173页
        7.3.4 Sparse Baysian Learning Based DOA Estimation第173-175页
        7.3.5 The Fourth Order Difference Co-Array of Proposed Method第175-180页
        7.3.6 Sparse Baysian Learning Based DOA Estimation第180-183页
    7.4 Simulation Results第183-189页
        7.4.1 Case Ⅰ: RSME for Different SNR第184-185页
        7.4.2 Case Ⅱ: RMSE for Different Number Of Snapshots第185-186页
        7.4.3 Case Ⅲ: RMSE for Different Number of Sources第186页
        7.4.4 Case Ⅳ: RMSE for Lower Angular DOA Estimation第186-187页
        7.4.5 Number of Lags vs Number of Sensors第187-189页
    7.5 Chapter Summary第189-191页
Chapter 8 Conclusion第191-197页
    8.1 Summary第194-196页
        8.1.1 VECADS第194-195页
        8.1.2 CATARCS第195页
        8.1.3 VEFODCI第195页
        8.1.4 TiCADD第195-196页
    8.2 Future Works第196-197页
Bibliography第197-222页
Appendix A第222-225页
Acknowledgements第225-227页
Publications第227-228页

论文共228页,点击 下载论文
上一篇:CaF2(Eu)粉末在低浓度氚水测量中的应用研究
下一篇:不锈钢微观组织结构对其氢脆性能的影响