首页--工业技术论文--无线电电子学、电信技术论文--雷达论文--雷达设备、雷达站论文--雷达接收设备论文--数据、图像处理及录取论文

雷达目标分类算法的研究与开发

摘要第3-5页
Abstract第5-7页
Abbreviations第22-24页
Chapter 1 Introduction第24-33页
    1.1 Motivation第24-26页
    1.2 Fundamental Concepts第26-29页
    1.3 Thesis Contributions第29-30页
    1.4 Thesis Organization第30-33页
Chapter 2 Prior Works for Feature Extratcion and Classification of SAR Imagery第33-46页
    2.1 Hand-designed features based approaches第33-39页
        2.1.1 Bayesian Compressive Sensing (BCS) with Scattering Centers Features Algorithm第33-34页
        2.1.2 A Wavelet Decomposition Method第34-35页
        2.1.3 SAR-ATR Using Discriminative Graphical Models第35-36页
        2.1.4 SAR-ATR Using Multi-layer Neural Network (ANN)第36-37页
        2.1.5 SAR-ATR Using SIFT Method第37-38页
        2.1.6 Texture and Geometric Features Combination第38-39页
    2.2 Deep Convolutional Neural Networks based approaches第39-46页
        2.2.1 A-Conv Nets第40-41页
        2.2.2 DCNN Based on Auto-encoder第41-42页
        2.2.3 DCNN with Data Augmentation Techniques第42-44页
        2.2.4 SAR-ATR using DCNN and SVMs Combination第44-46页
Chapter 3 SAR Image Target Classification Method Using Hand-designed Features and Support Vector Machines第46-77页
    3.1 Introduction第46-47页
    3.2 SAR Oriented Visual Saliency Model and Directed Acyclic Graph Support Vector Metric Based Target Classification第47-60页
        3.2.1 SAR Oriented GBVS Model第48-52页
        3.2.2 Gabor Feature Extraction第52-53页
        3.2.3 HOG Feature Extraction第53-54页
        3.2.4 Feature Fusion Using DCA第54-57页
        3.2.5 DAG-SVML Classification Using the Mahalanobis Distance Metric第57-60页
    3.3 Experimental Results and Analysis第60-76页
        3.3.1 Datasets第60-62页
        3.3.2 Experimental Results第62-63页
        3.3.3 Results on MSTAR Public Mixed Target Dataset第63-66页
        3.3.4 Results on MSTAR Public T-72 Variants Dataset第66-68页
        3.3.5 Results on MSTAR with Large Depression Angle Variations第68-69页
        3.3.6 Results on Outlier Rejection第69-70页
        3.3.7 Detection Results第70-73页
        3.3.8 Comparison with Different Fusion Methods第73-74页
        3.3.9 Comparison with the State-of-the-art Classifiers第74页
        3.3.10 Comparison with Recent Representative Methods第74-76页
    3.4 Conclusion第76-77页
Chapter 4 Bag-of-Visual-Words Based Feature Extraction and Selection for SAR Target Classification第77-93页
    4.1 Introduction第77-78页
    4.2 Bo VW Based Feature Extraction and Classification第78-85页
        4.2.1 Bo VW Feature Representation第79-80页
        4.2.2 Classification第80-81页
        4.2.3 Experimental Results第81-85页
    4.3 An Efficient Feature Selection for SAR Target Classification第85-92页
        4.3.1 Feature Selection第86-88页
        4.3.2 Evaluation and Results第88-92页
    4.4 Conclusion第92-93页
Chapter 5 Deep Feature Extraction and Combination for Synthetic Aperture Radar Target Classification第93-111页
    5.1 Introduction第93-94页
    5.2 Framework of the Classification Method第94-101页
        5.2.1 Data Pre-Processing第95-96页
        5.2.2 Feature Extraction第96-97页
        5.2.3 Feature Fusion第97-99页
        5.2.4 Learn the Mahalanobis Distance Metric and K-NN Classification第99-101页
    5.3 The Proposed VGG-S1 Architecture第101-103页
        5.3.1 Local Response Normalization第102页
        5.3.2 Dropout Regularization第102-103页
        5.3.3 SVM Classifier第103页
    5.4 Experimental Results and Analysis第103-110页
        5.4.1 Implementation details第103-106页
        5.4.2 Results on MSTAR Public Mixed Target Dataset第106-107页
        5.4.3 Results on MSTAR Public T-72 Variants Dataset第107-109页
        5.4.4 Results on MSTAR with Large Depression Angle Variations第109-110页
    5.5 Conclusion第110-111页
Chapter 6 Very Deep Multi-Canonical Correlation Analysis for SAR Image Target Classification第111-128页
    6.1 Introduction第111-113页
    6.2 Proposed SAR Target Classification Method第113-120页
        6.2.1 SAR Oriented Network第113-117页
        6.2.2 MCCA Based Feature level Fusion第117-119页
        6.2.3 Support Vector Machine (L2-SVM)第119-120页
    6.3 Experimental Results and Analysis第120-127页
        6.3.1 Implementation details第121页
        6.3.2 Results on MSTAR Public Mixed Target Dataset第121-123页
        6.3.3 Results on MSTAR Public T-72 Variants Dataset第123-124页
        6.3.4 Results on MSTAR with Large Depression Angle Variations第124-125页
        6.3.5 Comparison with Different Fusion Methods第125-126页
        6.3.6 Comparison with Recent Representative Methods第126-127页
    6.4 Conclusion第127-128页
Conclusions第128-131页
References第131-142页
List of Publications第142-145页
Acknowledgements第145-146页
Resume第146页

论文共146页,点击 下载论文
上一篇:UHF频段宽带双极化微带天线的设计与分析
下一篇:基于GigE协议图像传输系统实现