首页--环境科学、安全科学论文--废物处理与综合利用论文--一般性问题论文--废水的处理与利用论文

铋基光催化剂的调控与污染物降解机理研究

作者简历第7-9页
摘要第9-13页
abstract第13-18页
Chapter 1 Introduction第23-62页
    1.1 Research background第23-25页
    1.2 Introduction on bismuth-based semiconductor and the principles of photocatalysis第25-30页
        1.2.1 Introduction on bismuth-based semiconductor第25-27页
        1.2.2 Principles of semiconductor photocatalysis第27-30页
    1.3 Modification strategies for enhanced visble-light responsive photocatalytic activity of bismuth-based semiconductor第30-52页
        1.3.1 Electronic band structure modification strategies第31-37页
        1.3.2 Migration of photogenerated carriers by fabrication of nanocomposites第37-49页
        1.3.3 Morphology control and surface treatment第49-52页
    1.4 Methods for preparation of Bi-based semiconductor nanocomposites第52-54页
    1.5 Techniques for studying the semiconductor photocatalysis第54-58页
        1.5.1 Material structure investigation第54-56页
        1.5.2 Photocatalytic performance test第56-57页
        1.5.3 Photoelectric performance test第57页
        1.5.4 Theoretical calculation第57-58页
    1.6 Target of this Ph D work第58-62页
        1.6.1 Main research contents第59-60页
        1.6.2 Innovation of this thesis:第60-62页
Chapter 2 High dispersive gold on the surface of bismuth tungstate with enhanced visible absorption and catalytic degradation of ofloxacin第62-82页
    2.1 Preporation of Bi_2WO_6 nanosheets and Au/Bi_2WO_6 photocatalysts第63-66页
        2.1.1 Reagents and instruments第63-64页
        2.1.2 Synthesis of Bi_2WO_6 nanosheets第64页
        2.1.3 Synthesis of Au/Bi_2WO_6 nanocomposites第64-65页
        2.1.4 The photocatalytic activity test第65-66页
    2.2 Characterization of the Au/Bi_2WO_6第66-70页
        2.2.1 Crystal phase characterization of the Au/Bi_2WO_6第66-67页
        2.2.2 Morphology characterization of the Au/Bi_2WO_6第67-68页
        2.2.3 Chemical composition and surface states of as prepared samples第68-70页
    2.3 Photocatalytic activity of the Au/Bi_2WO_6第70-75页
    2.4 Study on photocatalysis mechanism of the Au/Bi_2WO_6 nanocomposites第75-81页
        2.4.1 Optical absorption properties of photocatalyst第75-77页
        2.4.2 PL emission and electron/hole recombination第77-78页
        2.4.3 Mott-Schottky measurements (MS)第78页
        2.4.4 Trapping experiments第78-80页
        2.4.5 Mechanism for significantly enhanced photoreduction performance第80-81页
    2.5 Conclusions第81-82页
Chapter 3 Study on the mechanism of surface lattice defects in enhancing visible light catalytic performance of Au/S/Bi VO_4第82-104页
    3.1 Preparation of Bi VO_4 hierarchical structure and S doped Au/S/Bi VO_4 photocatalysts第83-86页
        3.1.1 Reagents and instruments第83-84页
        3.1.2 Preparation of flower-like Bi OI第84页
        3.1.3 Preparation of Bi VO_4 hierarchical structure第84-85页
        3.1.4 Preparation of S doped Au/S/Bi VO_4 hierarchical structure第85-86页
        3.1.5 The photocatalytic activity test第86页
    3.2 Characterization of the Bi VO_4 hierarchical structure第86-87页
    3.3 Characterization of the BVSA nanocomposite第87-93页
        3.3.1 Chemical composition and surface states of as prepared samples第87-89页
        3.3.2 Crystal phase characterization of the BVSA第89-90页
        3.3.3 Morphology characterization of the BVSA第90-92页
        3.3.4 BET analysis of the BVSA第92-93页
    3.4 Photocatalytic activity of the BVSA第93-96页
    3.5 Study on photocatalysis mechanism of the BVSA nanocomposites第96-102页
        3.5.1 Optical absorption properties of photocatalyst第96-98页
        3.5.2 PL emission and electron/hole recombination第98-99页
        3.5.3 Mott-Schottky measurements第99-100页
        3.5.4 Trapping experiments第100-101页
        3.5.5 Mechanism for significantly enhanced photoreduction performance第101-102页
    3.6 Conclusions第102-104页
Chapter 4 SPR effect of zero-valent bismuth and band-gap regulation for enhancing Bi_2O_2CO_3 visible photocatalytic degradation of ofloxacin第104-127页
    4.1 Fabrication of Bi-loaded PO_4- Bi_2O_2CO_3 nanocomposites第105-108页
        4.1.1 Materials and instruments第105-106页
        4.1.2 Preparation of Bi_2O_2CO_3 and phosphate doped Bi_2O_2CO_3第106-107页
        4.1.3 Fabrication of Bi-loaded PO_4- Bi_2O_2CO_3 with oxygen-vacancy第107页
        4.1.4 The photocatalytic activity test第107-108页
    4.2 Characterization of Bi-loaded PO_4- Bi_2O_2CO_3 nanocomposites第108-115页
        4.2.1 Phase structure characterization of PO_4- Bi_2O_2CO_3 nanocomposites第108-109页
        4.2.2 Phase structure characterization of Bi-loaded PO_4- Bi_2O_2CO_3 nanocomposites第109页
        4.2.3 Morphology characterization of the samples第109-112页
        4.2.4 BET analysis of the samples第112-114页
        4.2.5 Chemical composition and surface states of as prepared samples第114-115页
    4.3 Photocatalytic activity of the samples第115-120页
    4.4 Photocatalytic mechanism investigation of the Bi-P-BOC nanocomposites第120-126页
        4.4.1 Optical absorption properties of photocatalyst第120-121页
        4.4.2 PL emission and electron/hole recombination第121-122页
        4.4.3 Mott-Schottky measurements第122-123页
        4.4.4 Trapping experiments第123-124页
        4.4.5 Mechanism for significantly enhanced photoreduction performance第124-126页
    4.5 Conclusions第126-127页
Chapter 5 Effective widening of the band gap of Bi Sex materials and adding H2O2 for enhanced visible-light-driven photocatalytic activity第127-151页
    5.1 Fabrication of Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution nanocomposites第128-131页
        5.1.1 Materials and instruments第128-129页
        5.1.2 Synthesis of Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第129-130页
        5.1.3 The photocatalytic activity evaluation of bismuth selenides第130-131页
    5.2 Characterization of the Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第131-135页
        5.2.1. Phase structure characterization of the Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第131-132页
        5.2.2. Morphology characterization of the Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第132-133页
        5.2.3 Chemical composition and surface states of Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第133-135页
        5.2.4 BET analysis of Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第135页
    5.3 The in situ reduction property investigation of EG第135-141页
        5.3.1 EG as reductant in preparation of elemental Bi in highly alkaline media第135-139页
        5.3.2 EG as reductant in preparation of Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第139-141页
    5.4. Visible-light-driven photocatalytic activity of Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第141-144页
        5.4.1 Enhanced visible-light-driven photocatalytic activity of Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第141-142页
        5.4.2. Key roles of H_2O_2 in the enhancement of MB degradation efficiency over Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution under visible-light irradiation第142-144页
    5.5. Photocatalytic mechanism investigation of Bi_2Se_3/Bi_(1.007)Se_(0.993) solid solution第144-150页
        5.5.1 Optical absorption properties of photocatalyst第144-145页
        5.5.2 PL emission and electron/hole recombination第145-146页
        5.5.3 Mott-Schottky measurement第146-147页
        5.5.4. Electron spin resonance (ESR) analysis第147-149页
        5.5.5 Mechanism for significantly enhanced photoreduction performance第149-150页
    5.6 Conclusions第150-151页
Chapter 6 Conclusions and perspectives第151-155页
    6.1 Conclusions第151-153页
    6.2 Perspectives第153-155页
Acknowledgements第155-157页
Reference第157-184页

论文共184页,点击 下载论文
上一篇:基于过程强化的铜冶炼烟灰中砷选择性去除工艺及机理
下一篇:非纯净CO2地质封存中CO2-N2-O2的运移规律研究--以鄂尔多斯盆地为例