首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

基于神经网络的心脏图像分割

Acknowledgement第5-6页
摘要第6-10页
ABSTRACT第10-11页
Preface第12-15页
1 Introduction第15-21页
    1.1 Research Background and Significance第15-17页
    1.2 Researches Status on Cardiac Segmentation Algorithm第17-19页
    1.3 Dissertation Outline第19-21页
2 Introduction to Neural Network Algorithm第21-35页
    2.1 Neural Networks第21-34页
        2.1.1 Artificial Neural Network第21-23页
        2.1.2 Back Propagation第23-26页
        2.1.3 Convolutional Neural Network (CNN)第26-29页
        2.1.4 Self-Coding Neural Network第29-31页
        2.1.5 Noise Reduction Self-Coding Network第31-32页
        2.1.6 Stack Noise Reduction From The Encoder第32-34页
    2.2 Summary of This Chapter第34-35页
3 Heart Segmentation Based on Neural Network第35-57页
    3.1 Heart Target Location Based on Convolutional Neural Network第35-46页
        3.1.1 Convolutional Neural Network Construction第36-38页
        3.1.2 Convolution Neural Network Training第38-41页
        3.1.3 Data Set and Experimental Configuration第41-43页
        3.1.4 Convolutional Neural Network Positioning Effect第43-46页
    3.2 Heart Segmentation Based on Stacked Noise Reduction Self-CodingNetwork第46-49页
        3.2.1 Stack Noise Reduction Self-Coding Network Construction第46-47页
        3.2.2 Stack Noise Reduction Self-Coding Network Training第47-49页
    3.3 SdA-Based CT Heart Segmentation Experiments第49-56页
        3.3.1 Data Set and Experimental Configuration第49-51页
        3.3.2 Evaluation of Segmentation Results第51页
        3.3.3 Experimental Results and Analysis第51-56页
    3.4 Summary of This Chapter第56-57页
4 Heart Segmentation Results Three-Dimensional Reconstruction第57-66页
    4.1 Surface Rendering第57-60页
        4.1.1 MC-Based Surface Rendering第57-59页
        4.1.2 Surface Rendering Results第59-60页
    4.2 Volume Rendering第60-64页
        4.2.1 Volume Rendering Based On Light Projection Method第60-63页
        4.2.2 Volume Rendering Results第63-64页
    4.3 Summary of This Chapter第64-66页
5 Summary and Outlook第66-68页
    5.1 Thesis Summary第66-67页
    5.2 Prospects and Outlook第67-68页
References第68-71页
Author Profile and Research Achievements Obtained during the Study for AMaster's Degree第71-73页
Dataset for the Master's Thesis第73-74页

论文共74页,点击 下载论文
上一篇:基于信息融合方法的卫星部件可靠性预测
下一篇:基于均匀设计的多智能体遗传算法的研究以及游戏中的应用