首页--数理科学和化学论文--计算数学论文--数值分析论文--微分方程、积分方程的数值解法论文

振荡哈密尔顿系统的保结构算法

Acknowledgements第4-9页
摘要第9-13页
Abstract第13-16页
1 Introduction第18-30页
    1.1 Oscillatory second-order systems and the corresponding variation-of-constants formula第18-21页
    1.2 Hamiltonian systems and some properties第21-22页
    1.3 Symplectic,multi-symplectic,energy-preserving methods第22-30页
        1.3.1 Symplectic algorithms for Hamiltonian ODEs第22-24页
        1.3.2 Conservation laws,multi-symplectic structures and algorithms for Hamiltonian PDEs第24-27页
        1.3.3 Energy-preserving methods for Hamiltonian systems第27-30页
2 Integrators for nonlinear oscillatory systems第30-54页
    2.1 Motivation第30-32页
    2.2 Successive approximations for system of oscillatory second-order dif-ferential equations第32-36页
    2.3 Some explicit Gautschi-type integrators第36-37页
    2.4 Error analysis for the local approximate systems第37-38页
    2.5 Numerical experiments for successive approximations第38-44页
    2.6 An effective approach based on local equivalent system第44-50页
    2.7 Conclusions第50-54页
3 Symplectic and symmetric ARKN and ERKN methods第54-94页
    3.1 Motivation第54-56页
    3.2 ARKN methods and the corresponding order conditions第56-57页
    3.3 Symplecticity conditions for ARKN methods and the existence of SARKN integrators第57-66页
    3.4 Phase and stability properties of SARKN1s2 method第66-68页
    3.5 Symmetry analysis of ARKN methods第68-69页
    3.6 Numerical experiments for SARKN methods第69-74页
    3.7 ERKN methods and the corresponding order conditions第74-75页
    3.8 Symmetry and symplecticity conditions for ERKN methods第75-78页
    3.9 Construction of SSERKN methods第78-82页
        3.9.1 Two-stage SSERKN methods of order 2第78-80页
        3.9.2 A three-stage SSERKN method of order 4第80-82页
    3.10 Phase and stability properties of the SSERKN methods第82-85页
    3.11 Numerical experiments for SSERKN methods第85-93页
    3.12 Conclusions and discussions第93-94页
4 A fourth-order numerical schemes for nonlinear Hamiltonian wave equa-tions第94-116页
    4.1 Motivation第94-96页
    4.2 PDEs to ODEs by finite difference discretizations of spatial derivatives第96-101页
    4.3 The stability and convergence of the semidiscretization第101-106页
        4.3.1 Discrete energy conservation law第101-103页
        4.3.2 The Stability and Convergence第103-106页
    4.4 Multidimensional ERKN integrators第106-109页
    4.5 Numerical experiments第109-115页
    4.6 Conclusions第115-116页
5 Multi-symplectic extended leap-frog methods for Hamiltonian PDEs第116-152页
    5.1 Motivation第116-118页
    5.2 Conservation laws and multi-symplectic structures of Hamiltonian wave equations第118-119页
    5.3 Extended RKN discretization of wave equations第119-126页
        5.3.1 Extended RKN methods for ODEs第119-120页
        5.3.2 Multi-symplectic extended RKN discretization第120-126页
    5.4 Construction of explicit multi-symplectic schemes第126-136页
        5.4.1 Eleap-frogⅠ:Multi-symplectic ERKN scheme第127-132页
        5.4.2 Eleap-frogⅡ:Multi-symplectic ERKN-PRK scheme第132-133页
        5.4.3 Analysis of linear stability第133-136页
    5.5 Numerical experiments第136-151页
        5.5.1 The conservation laws and the solution第136-145页
        5.5.2 Dispersion analysis第145-151页
    5.6 Conclusion第151-152页
6 A novel energy-preserving scheme for Hamiltonian wave equations第152-176页
    6.1 Motivation第152-155页
    6.2 An energy-preserving numerical scheme based on FEM and AVF第155-164页
        6.2.1 Spatial semidiscretization:Finite element formulation第155-160页
        6.2.2 Time discretization:Average Vector Field method第160-164页
    6.3 Illustration by a selected piecewise-linear polynomial basis第164-167页
    6.4 Numerical experiments第167-172页
    6.5 Conclusions and discussions第172-176页
7 Efficient algorithms for computingΦ_0(Ⅴ)andΦ_1(Ⅴ)第176-200页
    7.1 Motivation第176-179页
    7.2 ARKN and ERKN integrators for multi-frequency and multidimen-sional oscillatory second-order differential systems第179-185页
        7.2.1 Basic definitions of multi-frequency and multidimensiona ARKN and ERKN methods第179-180页
        7.2.2 Illuminating experiments第180-185页
    7.3 Efficient computation of matrix-valued functions Φ_0(Ⅴ)andΦ_1(Ⅴ)第185-189页
    7.4 Proper choices of r,s and N第189-194页
    7.5 Stability analysis of ARKN and ERKN methods on the basis of approx-imations to Φ_0(Ⅴ)and Φ_1(Ⅴ)第194-198页
    7.6 Conclusions第198-200页
Bibliography第200-213页
Foundations and publications第213-215页

论文共215页,点击 下载论文
上一篇:福利多元主义下我国弱势儿童的福利研究
下一篇:企业年金对员工职业行为的激励研究