摘要 | 第1-5页 |
ABSTRACT | 第5-11页 |
第一章 绪论 | 第11-15页 |
·选题背景 | 第11-12页 |
·国内外研究动态 | 第12-14页 |
·论文主要研究内容 | 第14-15页 |
第二章 覆冰的产生机理及其覆冰在线监测系统 | 第15-25页 |
·导线覆冰产生机理及分类 | 第15-17页 |
·影响导线覆冰的因素 | 第17-22页 |
·忻州输电线路109 杆塔覆冰在线监测系统 | 第22-23页 |
·本章小结 | 第23-25页 |
第三章 基于神经网络的输电线路覆冰智能辨识模型 | 第25-55页 |
·系统辨识理论 | 第25-27页 |
·系统建模 | 第25-26页 |
·经典的系统辨识 | 第26页 |
·现代的系统辨识 | 第26-27页 |
·神经网络系统辨识 | 第27页 |
·神经网络的原理 | 第27-30页 |
·BP 神经网络机理 | 第30-35页 |
·BP 网络原理 | 第30-31页 |
·BP 网络算法 | 第31-33页 |
·BP 算法存在的缺陷 | 第33-35页 |
·改进的BP 算法 | 第35-37页 |
·样本集的选择与训练 | 第36页 |
·神经网络拓扑结构的确定 | 第36-37页 |
·初始权值的选取 | 第37页 |
·网络学习参数的选取 | 第37页 |
·RBF 神经网络机理 | 第37-43页 |
·RBF 结构 | 第38-39页 |
·RBF 网络实现 | 第39-40页 |
·RBF 算法 | 第40-43页 |
·BP 网络和RBF 网络分析讨论 | 第43-45页 |
·BP 网缺陷 | 第43-44页 |
·RBF 网络与BP 网络综合讨论 | 第44-45页 |
·基于神经网络仿真分析 | 第45-54页 |
·对数据归一化处理 | 第45-47页 |
·BP 网络仿真建模 | 第47-51页 |
·RBF 网络仿真建模 | 第51-52页 |
·仿真结果比较 | 第52-54页 |
·本章小结 | 第54-55页 |
第四章 基于支持向量机的输电线路覆冰智能辨识模型建立 | 第55-76页 |
·向量机机理 | 第57-58页 |
·支持向量分类机 | 第58-63页 |
·线性学习机 | 第58-62页 |
·非线性SVM | 第62-63页 |
·支持向量机回归 | 第63-68页 |
·SVM 回归原理 | 第64-65页 |
·SVM 的最优化回归算法 | 第65-68页 |
·核函数和参数的选择 | 第68-70页 |
·构造和选择核函数 | 第68-69页 |
·参数的影响 | 第69-70页 |
·基于支持向量机仿真分析 | 第70-75页 |
·基于支持向量机仿真建模 | 第70-74页 |
·仿真结果比较 | 第74-75页 |
·本章小结 | 第75-76页 |
第五章 总结 | 第76-78页 |
参考文献 | 第78-82页 |
致谢 | 第82-83页 |
攻读学位期间发表的学术论文 | 第83页 |