首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

Fractal Analysis of Datasets Using Distributed Computing

Acknowledgements第4-5页
abstract第5-6页
Chapter 1. Introduction第9-15页
    1.1 Introduction to the topic and its relevance第9-10页
    1.2 Goals, objectives and structure of the thesis第10-11页
    1.3 Basic concepts of clustering第11-15页
Chapter 2. Reduction of dimension using the fractal dimension第15-60页
    2.1 Application of fractal theory to data sets第15-31页
        2.1.1 General information about fractals第15-20页
        2.1.2 Hausdorff distance第20-21页
        2.1.3 Mathematical foundations of fractal compression第21-23页
        2.1.4 Methods of Fractal Data Mining第23-25页
        2.1.5 Understanding a table as a fractal第25-29页
        2.1.6 The reduction of the dimensionality第29-31页
    2.2 The design of the algorithm第31-60页
        2.2.1 General view of the searching domains algorithm第31-34页
        2.2.2 Creating a list of possible domain structures第34-35页
        2.2.3 Calculating the number of different domain values for each set第35-36页
        2.2.4 Creating a list of all possible domain structures第36-40页
            2.2.4.1 Searching optimal set of domains and analysis of results第36-38页
            2.2.4.2 The algorithm of brute force of searching domains第38-40页
        2.2.5 The algorithm searching the optimal number of domains, number of distinct values of a domain and the analysis of the results第40-45页
        2.2.6 Improved algorithm using Map Reduce第45-60页
            2.2.6.1 Why we use Hadoop MapReduce第45-48页
            2.2.6.2 The problem of counting unique values in big datasets第48-51页
            2.2.6.3 Designing the algorithm of calculation using MapReduce第51-60页
Chapter 3. Clustering of the obtained domains第60-91页
    3.1 Clustering of the obtained domains第60-61页
    3.2 Review of clustering algorithms第61-67页
    3.3 Grid-based clustering Halite第67-74页
    3.4 Improvement of the algorithm Halite第74-91页
        3.4.1 Improved MDL model in determining the relevance of the axes of the clusters第74-81页
        3.4.2 The application of Laplacian filter and the behavior at the boundaries and corners of the space第81-91页
Chapter 4. Experiments and conclusion第91-104页
    4.1 Review of test cases第91-96页
    4.2 The results of the experiments第96-102页
    4.3 Conclusion第102-104页
References第104-105页

论文共105页,点击 下载论文
上一篇:全向结构光视觉测量与地图构建研究
下一篇:Web-based Movie Recommender System Using User Preference Models with Adjusted Euclidean Distance Similarity Measure