摘要 | 第3-4页 |
Abstract | 第4-5页 |
第1章 引言 | 第8-11页 |
1.1 研究背景及意义 | 第8-9页 |
1.2 国内外研究现状 | 第9-10页 |
1.3 本文组织结构 | 第10-11页 |
第2章 晶体场和电子顺磁共振理论 | 第11-33页 |
2.1 晶体场理论 | 第11-29页 |
2.1.1 晶体场理论的基本假设和体系哈密顿量 | 第12页 |
2.1.2 晶体场势能 | 第12-19页 |
2.1.3 晶体场的三种耦合方案 | 第19-21页 |
2.1.4 能量矩阵的建立 | 第21-25页 |
2.1.5 晶体场模型 | 第25-26页 |
2.1.6 晶体中d~n离子的共价性 | 第26-29页 |
2.2 电子顺磁共振理论 | 第29-33页 |
2.2.1 电子顺磁共振的基本原理 | 第29-30页 |
2.2.2 自旋哈密顿参量简介 | 第30-31页 |
2.2.3 自旋哈密顿理论简介 | 第31-33页 |
第3章 3d~n(n=3,5,9)离子自旋哈密顿参量的理论研究 | 第33-64页 |
3.1 3d~3离子自旋哈密顿参量的理论研究 | 第33-36页 |
3.1.1 3d~3组态能级 | 第33-34页 |
3.1.2 斜方畸变八面体中 3d~3离子的自旋哈密顿参量微扰公式 | 第34-35页 |
3.1.3 正交畸变八面体中 3d~3离子的自旋哈密顿参量微扰公式 | 第35-36页 |
3.2 3d~5离子自旋哈密顿参量的理论研究 | 第36-38页 |
3.2.1 3d~5组态能级 | 第36页 |
3.2.2 斜方畸变八面体中 3d~5离子的自旋哈密顿参量微扰公式 | 第36-38页 |
3.3 3d~9离子自旋哈密顿参量的理论研究 | 第38-41页 |
3.3.1 3d~9组态能级 | 第38-39页 |
3.3.2 四角伸长八面体中 3d~9离子的自旋哈密顿参量微扰公式 | 第39-41页 |
3.4 应用 | 第41-64页 |
3.4.1 金红石TiO_2结构中Cr~(3+), Mn~(4+)和Fe~(3+)中心自旋哈密顿参量的理论研究 | 第41-44页 |
3.4.2 三种温度下NaCl中Cr(CN)_6~(3?)三个不同中心自旋哈密顿参量的理论研究 | 第44-50页 |
3.4.3 六氰基金属顺磁盐溶液掺相应 3d~3稀释剂自旋哈密顿参量的理论研究 | 第50-55页 |
3.4.4 Sr_2Ca_2Cu_3O_x中Cu~(2+)中心自旋哈密顿参量的理论研究 | 第55-56页 |
3.4.5 讨论 | 第56-64页 |
第4章 总结与展望 | 第64-68页 |
4.1 本文的主要工作 | 第64-66页 |
4.2 特色和创新点 | 第66-67页 |
4.3 后续研究工作 | 第67-68页 |
参考文献 | 第68-75页 |
致谢 | 第75-76页 |
攻读硕士学位期间从事的科研工作及取得的成果 | 第76页 |