首页--工业技术论文--金属学与金属工艺论文--金属学与热处理论文--金属材料论文--钢论文--钢的组织与性能论文

An Experimental Study of Fatigue Crack Initiation and Propagation Behavior of Structural Steel and Weld Using Non-Destructive Techniques

ABSTRACT第6-7页
摘要第8-15页
Nomenclature第15-17页
CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW第17-35页
    1.1 Acoustic Emission and its Applications第17-24页
        1.1.1 Acoustic emission第17-19页
        1.1.2 Location of acoustic emission sources第19-20页
        1.1.3 Acoustic emission source characterization第20-23页
        1.1.4 Acoustic emission during fatigue crack growth第23-24页
    1.2 AE application in fracture mechanics第24-26页
        1.2.1 Crack initiation第24页
        1.2.2 Crack propagation第24-25页
        1.2.3 Fatigue life prediction第25-26页
    1.3 Quantitative acoustic emission第26-27页
        1.3.1 Wavelet packet theory第26-27页
    1.4 Digital imaging correlation and its application第27-33页
        1.4.1 Digital imaging correlation第27-31页
        1.4.2 Application of DIC in fracture mechanics第31-33页
    1.5 Fatigue fracture mechanics in welded structures第33-34页
    1.6 Outline of the dissertation第34-35页
CHAPTER 2 CRACK INITIATION BEHAVIOR IN WELDED STRUCTURES第35-51页
    2.1 Experimental details for crack initiation第35-40页
        2.1.1 Specimens design第35-36页
        2.1.2 Experimental methods第36-37页
        2.1.3 Acoustic emission equipment and instrumentation第37-39页
        2.1.4 Acquiring Calibration Images第39-40页
        2.1.5 Source of errors during DIC measurement第40页
    2.2 Finite element analysis第40-42页
    2.3 Theoretical model for crack initiation第42-44页
        2.3.1 A Continuum mechanics fatigue damage initiation第42-44页
    2.4 Results and discussions第44-49页
        2.4.1 Wavelet packet analysis第44-47页
        2.4.2 Finite element analysis第47-49页
    2.5 Conclusion第49-51页
CHAPTER 3 FATIGUE CRACK PROPAGATION BEHAVIOR IN WELDEDCONNECTIONS第51-67页
    3.1 Experimental details第51-52页
        3.1.1 Specimen design第51-52页
        3.1.2 Experimental set up for fatigue crack propagation第52页
    3.2 Theoretical models for crack propagation第52-56页
        3.2.1 Continuum damage mechanics model第52-53页
        3.2.2 Linear elastic fracture mechanics model第53-55页
        3.2.3 Acoustic emission model第55-56页
    3.3 Results and discussion第56-65页
        3.3.1 Critical fatigue levels第56-59页
        3.3.2 Digital imaging correlation for fatigue crack propagation第59-62页
        3.3.3 Crack growth rate第62-63页
        3.3.4 Crack extension estimation第63-65页
    3.4 Conclusion第65-67页
CHAPTER 4 FATIGUE DAMAGE CHARACTERIZATION AND LIFEPREDICTION IN WELDED STRUCTURES第67-78页
    4.1 Acoustic emission characterization of fatigue crack第67-70页
        4.1.1 Acoustic emission during fatigue crack propagation第67-68页
        4.1.2 Effect of peak loads on crack growth第68-70页
    4.2 Determination of fatigue crack propagation rate (CPR)第70-73页
    4.3 Basic principles of fatigue life prediction第73-76页
    4.4 Prediction of crack extension from acoustic emissions第76-77页
    4.5 Conclusion第77-78页
CHAPTER 5 MICROSCOPIC CRACK INITIATION CONDITION第78-87页
    5.1 Experimental details第79-80页
    5.2 AE Detection of crack initiation第80-82页
    5.3 Digital microscope for surface crack第82-84页
    5.4 Digital Imaging Correlation for Microscopic Initiation第84-85页
    5.5 Comparison of surface crack and internal cracks第85-86页
    5.6 Conclusion第86-87页
CHAPTER 6 GENERAL CONCLUSIONS AND RECOMMENDATIONS第87-89页
    6.1 Conclusion第87-88页
    6.2 Future work and recommendation第88-89页
REFERENCE第89-94页
ACADEMIC PAPERS PUBLISHED/UNDER REVIEW第94页

论文共94页,点击 下载论文
上一篇:Towards An Integrated Elderly Care Policy (Model) in Ghana: Expectations, Prospects and Challenges
下一篇:Extended Usage Control Models and Testing for Access Control Policies