首页--环境科学、安全科学论文--废物处理与综合利用论文--一般性问题论文--废水的处理与利用论文

反硝化型厌氧甲烷氧化生物膜对不同电子受体的响应

ABSTRACT第6-8页
中文摘要第9-16页
CHAPTER 1 Introduction第16-34页
    1.1 Anaerobic oxidation of methane第16-19页
        1.1.1 Anaerobic oxidation of methane第16-17页
        1.1.2 Microaerobic oxidation of methane第17-19页
    1.2 Denitrifying anaerobic methane oxidation第19-22页
        1.2.1 Discovery of denitrifying anaerobic methane oxidation第19-21页
        1.2.2 Significance of denitrifying anaerobic methane oxidation第21-22页
    1.3 Microbial oxyanion contaminants reduction第22-29页
        1.3.1 Microbial nitrate removal from groundwater第22-23页
        1.3.2 Microbial chromate reduction第23-25页
        1.3.3 Microbial perchlorate reduction第25-27页
        1.3.4 Microbial selenate reduction第27-28页
        1.3.5 Microbial bromate reduction第28-29页
    1.4 Research proposal第29-34页
        1.4.1 Research objectives and significance第29页
        1.4.2 Key scientific problems to be solved第29-30页
        1.4.3 Problems proposed第30-31页
        1.4.4 Feasibility analysis第31-32页
        1.4.5 Research approaches第32页
        1.4.6 Research novelties第32页
        1.4.7 Research design第32-34页
CHAPTER 2 Materials and Methods第34-40页
    2.1 MBfR operation第34-37页
        2.1.1 Experimental setup第34-36页
        2.1.2 Inoculum and medium composition第36页
        2.1.3 MBfR operation第36-37页
        2.1.4 Mass balance第37页
    2.2 Analytical methods第37-38页
        2.2.1 Chemical analyses第37-38页
        2.2.2 Precipitates characterization第38页
    2.3 Microbial characterization第38-39页
        2.3.1 DNA extraction and 16S rRNA gene sequencing第38页
        2.3.2 Fluorescence in situ hybridization (FISH)第38-39页
    2.4 Calculations and modelling第39-40页
        2.4.1 Rate determination of biological nitrogen-conversion reactions第39页
        2.4.2 Modelling via Visual MINTEQ第39-40页
CHAPTER 3 Anammox-enhanced Denitrifying Anaerobic Methane Oxidation Biofilm第40-56页
    3.1 Achieving anammox-enhanced DAMO activity第40-45页
        3.1.1 DAMO microbial enrichment in an MBfR第40-41页
        3.1.2 Long-term methane-supported nitrate removal in an MBfR第41-44页
        3.1.3 Mass-balance during methane-driven nitrate reduction by DAMO-anammox co-culture第44-45页
    3.2 Microbial community structure and potential interactions in DAMO-anammox co-culture第45-49页
        3.2.1 Global microbial community via 16S rRNA gene sequencing第45-47页
        3.2.2 Proposed interactions in DAMO-anammox co-culture during nitrate reduction第47-49页
    3.3 Enhanced nitrate reduction via a powdered zero-valent iron/activated carbon micro-electrolysis第49-55页
        3.3.1 Comparison of nitrate reduciton by Fe~0/AC,Fe~0, Fe~0/sand and AC第49-50页
        3.3.2 Effect of initial pH and Fe~0 to AC mass ratio第50-52页
        3.3.3 Variations of ferrous ion and oxidation-reduction potential第52-54页
        3.3.4 Proposed pathways of nitrate reduction by micro-electrolysis第54-55页
    3.4 Summary第55-56页
CHAPTER 4 Methane-supported Nitrate Removal from Well-oxygenated Groundwater:Implications from Dissolved Oxygen Effect on DAMO Biofilm第56-72页
    4.1 Achieving stable nitrate removal under oxygen-limited conditions第56-64页
        4.1.1 DAMO microbial enrichment in an MBfR第56-57页
        4.1.2 Long-term methane-supported nitrate removal in an MBfR第57-60页
        4.1.3 Production of VFAs by methane oxidation第60-61页
        4.1.4 Mass-balance during microaerobic methane-driven nitrate reduction第61-64页
    4.2 Microbial community structure and potential players for nitrate reduction under oxygen-limited conditions第64-68页
        4.2.1 Functional microbial groups via FISH第64-65页
        4.2.2 Global microbial community via 16S rRNA gene sequencing第65-66页
        4.2.3 Proposed pathways of microaerobic methane-driven nitrate reduction第66-68页
    4.3 Environmental implications第68-70页
        4.3.1 Methane-supported nitrate removal from groundwater in an MBfR第68-70页
        4.3.2 Biogeochemical nitrogen and carbon cycles under oxygen-limited conditions innatural niches第70页
    4.4 Summary第70-72页
CHAPTER 5 Microbial Chromate Reduction Driven by a Denitrifying Anaerobic MethaneOxidation Biofilm第72-92页
    5.1 Demonstrating methane-driven microbial chromate reduction: batch culture第72-77页
        5.1.1 Microbial chromate reduction第72-74页
        5.1.2 Variations in VFAs, ammonium and phosphate第74-77页
    5.2 Achieving methane-driven microbial chromate reduction: MBfR operation第77-81页
        5.2.1 DAMO microbial enrichment in an MBfR第77-78页
        5.2.2 Long-term methane-driven chromate bio-reduction in an MBfR第78-80页
        5.2.3 Mass-balance during methane-driven chromate bio-reduction第80-81页
    5.3 Tracing Cr speciation and distribution after chromate bio-reduction第81-84页
        5.3.1 Cr speciation via XPS第81-82页
        5.3.2 Cr distribution via Visual MINTEQ第82-84页
    5.4 Microbial community structure and potential players for chromate bio-reduction第84-90页
        5.4.1 Functional microbial groups via FISH第84-85页
        5.4.2 Global microbial community via 16S rRNA gene sequencing第85-86页
        5.4.3 Proposed pathways of anaerobic methane-driven chromate bio-reduction第86-89页
        5.4.4 Comments to previous studies on methane-driven chromate bio-reduction第89-90页
    5.5 Environmental implications第90-91页
    5.6 Summary第91-92页
CHAPTER 6 Microbial Perchlorate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm第92-106页
    6.1 Demonstrating methane-driven microbial perchlorate reduction:batch culture第92-95页
        6.1.1 Microbial perchlorate reduction第92-94页
        6.1.2 Variations in VFAs, ammonium and phosphate第94-95页
    6.2 Achieving methane-driven microbial perchlorate reduction:MBfR operation第95-99页
        6.2.1 DAMO microbial enrichment in an MBfR第95-96页
        6.2.2 Long-term methane-driven perchlorate bio-reduction in an MBfR第96-98页
        6.2.3 Mass-balance during methane-driven perchlorate bio-reduction第98-99页
    6.3 Microbial community structure and potential players for perchlorate bio-reduction第99-104页
        6.3.1 Global microbial community via 16S rRNA gene sequencing第99-101页
        6.3.2 Proposed pathways of anaerobic methane-driven perchlorate bio-reduction第101-104页
    6.4 Environmental implications第104-105页
    6.5 Summary第105-106页
CHAPTER 7 Microbial Selenate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm第106-119页
    7.1 Achieving methane-driven microbial selenate reduction第106-110页
        7.1.1 DAMO microbial enrichment in an MBfR第106-107页
        7.1.2 Long-term methane-driven selenate bio-reduction in an MBfR第107-109页
        7.1.3 Mass-balance during methane-driven selenate bio-reduction第109-110页
    7.2 Tracing Se distribution and speciation after selenate bio-reduction第110-112页
        7.2.1 Se distribution via TEM-EDS第110-111页
        7.2.2 Se speciation via XPS第111-112页
    7.3 Microbial community structure and potential players for selenate bio-reduction第112-117页
        7.3.1 Functional microbial groups via FISH第112-113页
        7.3.2 Global microbial community via 16S rRNA gene sequencing第113-115页
        7.3.3 Possible roles of Candidatus Methanoperedens and Candidatus Methylomirabilis第115-117页
        7.3.4 Proposed pathways of anaerobic methane-driven selenate bio-reduction第117页
    7.4 Environmental implications第117-118页
    7.5 Summary第118-119页
CHAPTER 8 Microbial Bromate Removal from Well-oxygenated Groundwater Driven by a Methane-supported Biofilm第119-129页
    8.1 Achieving methane-supported microbial bromate removal第119-124页
        8.1.1 DAMO microbial enrichment in an MBfR第119-120页
        8.1.2 Long-term methane-supported bromate bio-removal in an MBfR第120-122页
        8.1.3 Production of VFAs by methane oxidation第122-123页
        8.1.4 Mass-balance during methane-driven bromate bio-reduction第123-124页
    8.2 Microbial community structure and potential players for bromate bio-reduction第124-127页
        8.2.1 Global microbial community via 16S rRNA gene sequencing第124-126页
        8.2.2 Proposed pathways of microaerobic methane-driven bromate bio-reduction第126-127页
    8.3 Environmental implications第127-128页
    8.4 Summary第128-129页
CHAPTER 9 Conclusions and Recommendations第129-132页
    9.1 Main conclusions第129-131页
    9.2 Recommendations第131-132页
REFERENCES第132-142页
PUBLICATIONS第142-143页
ACKNOLEDGEMENTS第143页

论文共143页,点击 下载论文
上一篇:通信约束下的网络化控制系统事件触发控制与调度研究
下一篇:可重构神经网络加速器设计关键技术研究