首页--工业技术论文--一般工业技术论文--工程材料学论文--特种结构材料论文

多金属纳米片用于燃料电池

摘要第3-4页
Abstract第4-5页
Chapter 1 Introduction第12-31页
    1.1 Overview第12页
    1.2 Nanoplates第12-13页
    1.3 Types of Nanoplates第13-17页
        1.3.1 Hexagonal nanoplates第13-15页
        1.3.2 Triangular Nanoplates第15-16页
        1.3.3 Triangular Nanoprism第16-17页
        1.3.4 Triangular Bipyramids第17页
    1.4 Methods of preparation第17-20页
        1.4.1 Photochemical Synthetic method or Light-mediated methods第18页
        1.4.2 Chemical reduction method第18页
        1.4.3 Thermal Syntheses method第18-19页
        1.4.4 Biological Thermal Syntheses method第19页
        1.4.5 Ultrasound and Microwave methods第19-20页
    1.5 Nanosheets第20-27页
        1.5.1 Synthesis of Nanosheets By Oxidative Etching Growth第21-22页
        1.5.2 Hydrothermal method第22-24页
        1.5.3 Surfactant controlled method第24-25页
        1.5.4 Carbon mono oxide assisted synthesis method第25-26页
        1.5.5 Template assisted synthesis method第26-27页
    1.6 Branched Nanocrystals第27-31页
        1.6.1 Ligand directed growth method第27-28页
        1.6.2 Seeded growth method第28-29页
        1.6.3 Template growth method第29-30页
        1.6.4 Twin Directed growth method第30-31页
Chapter 2 Shape Controlled synthesis of porous trimetallic PtAgBi and tetrametallicPtAgBiCo nanoplates as highly active and methanol-tolerant electrocatalyst for OxygenReduction Reaction第31-61页
    2.1 Introduction第31-32页
    2.2 Experimental Section第32-34页
        2.2.1 Regents:第32页
        2.2.2 Synthesis:第32页
        2.2.3 Synthesis of PtAgBi Nanoplates第32-33页
        2.2.4 Synthesis of PtAgBiCo Nanoplates第33页
        2.2.5 Synthesis of PdAgBi and RhAgBi Nanostructures第33页
        2.2.6 Synthesis of PtAg, PtBi, PtCo Nanostructures第33-34页
        2.2.7 Characterization:第34页
    2.3 Electrochemical Measurements第34-35页
    2.4 Results and discussion第35-36页
        2.4.1 TEM and HRTEM images of PtAgBi nanoplates第35-36页
    2.5 Controlled growth of PtAgBi nanoplates第36-45页
        2.5.1 Role of reaction time第36-39页
        2.5.2 Use of oxidative etchant第39-40页
        2.5.3 Role of KI第40-41页
        2.5.4 Role of oxygen for the formation of PtAgBi nanoplates第41-42页
        2.5.5 Role of reaction temperature第42-43页
        2.5.6 Role of Precursors第43-44页
        2.5.7 Formation mechanism第44页
        2.5.8 TEM, HRTEM images of PtAgBiCo nanoplates第44-45页
    2.6 Controlled growth of PtAgBiCo nanoplates and discussion第45-48页
        2.6.1 Role of Twin第45页
        2.6.2 Role of Reaction time第45-46页
        2.6.3 Role of Cobalt第46-47页
        2.6.4 Role of metal salt amount第47-48页
    2.7 Structural analysis of PtAgBi and PtAgBiCo nanoplates第48-50页
        2.7.1 Crystal structure analysis of PtAgBi and PtAgBiCo nanoplates第48-49页
        2.7.2 Chemical structure analysis of PtAgBi and PtAgBiCo nanoplates第49-50页
    2.8 Oxidation Reduction Reaction and Methanol Tolerance of nanoplates第50-54页
        2.8.2 TEM and HRTEM analysis of PtAgBiCo nanoplates after acid-treatment第50-51页
        2.8.3 Crystal structure analysis of PtAgBiCo nanoplates after acid-treatment第51页
        2.8.4 Chemical structure analysis of PtAgBiCo nanoplates after acid-treatment第51-52页
        2.8.5 Line-scanning profiles of PtAgBiCo nanoplates after acid-treatment第52-53页
        2.8.6 Energy Dispersive X-Ray spectroscopy (EDS) analysis of nanoplates第53-54页
    2.9 Electrochemical Results第54-60页
    2.10 Summary第60-61页
Chapter 3 Crystallinity induced shape evolution of PtAg nanosheets from branchednanocrystals第61-76页
    3.1 Introduction第61页
    3.2 Experimental第61-63页
        3.2.1 Chemical reagents第61-62页
        3.2.2 Synthesis of Pt-Ag nanosheets第62-63页
        3.2.3 Characterization Techniques第63页
    3.3 Electrocatalysts test第63页
    3.4 Results and discussion第63-64页
        3.4.1 TEM and HRTEM analysis of Pt-Ag nanosheets第64页
    3.5 Controlled synthesis of Pt-Ag nanosheets第64-67页
        3.5.1 Formation of Twin nanoparticles第64-65页
        3.5.2 Formation of Twined multipods第65-67页
        3.5.3 Formation of intermediate product第67页
    3.6 Formation analysis of Pt-Ag nanosheets第67-72页
        3.6.1 Role of twin第67-68页
        3.6.2 Role of oxidative etching第68-70页
        3.6.3 Role of Carbon monoxide第70-71页
        3.6.4 Role of KI第71页
        3.6.5 Role of metal precursors第71-72页
    3.7 Formation mechanism第72页
    3.8 Structural analysis of Pt-Ag nanosheets第72-73页
        3.8.1 Crystal structure analysis第72-73页
        3.8.2 Chemical structure analysis第73页
    3.9 Electrochemical results第73-75页
    3.10 Summary第75-76页
Chapter 04 Surface Confinement Etching and Polarization Matters:New Approach toPrepare Ultrathin PtAgCo nanosheets For Hydrogen-Evolution Reaction第76-95页
    4.1 Introduction第76-77页
    4.2 Experimental第77-79页
        4.2.1 Chemical reagents第77页
        4.2.2 Synthesis of PtAg nanosheets:第77页
        4.2.3 Synthesis of PtAgCo nanosheets:第77-78页
        4.2.4 Synthesis of PtCo and AgCo Nanostructures:第78页
        4.2.5 Synthesis of PtAgCu tetrapods and PtAgFe multipods:第78页
        4.2.6 Characterization Techniques第78页
        4.2.7 Electrochemical Test第78-79页
    4.3 Results and discussion第79-81页
        4.3.1 TEM and HRTEM images with Elemental Mapping第80-81页
    4.4 Controlled synthesis of PtAgCo nanosheets第81-87页
        4.4.1 Role of defects第81-82页
        4.4.2 CO-Striping test第82-83页
        4.4.3 Role of Cobalt第83页
        4.4.4 Vibrating sample magnetometry (VSM) analysis第83-85页
        4.4.5 Role of carbon monoxide第85-86页
        4.4.6 Role of Precursors第86-87页
    4.5 Formation mechanism第87-88页
    4.6 Structural analysis of PtAgCo nanosheets第88-89页
        4.6.1 Crystal structure analysis第88-89页
        4.6.2 Chemical structure analysis第89页
    4.7 Electrochemical results第89-94页
    4.8 Summary第94-95页
Chapter 05 Shape controlled synthesis of PtAgCu Tetrapods第95-111页
    5.1 Introduction第95-96页
    5.2 Experimental第96-98页
        5.2.1 Chemical reagents第96页
        5.2.2 Synthesis of PtAgCu Tetrapods第96-97页
        5.2.3 Characterization Techniques第97页
        5.2.4 Electrocatalysts test第97-98页
    5.3 Results and discussion第98-99页
        5.3.1 TEM and HRTEM analysis of PtAgCu Tetrapods第98-99页
    5.4 Controlled synthesis of PtAgCu Tetrapods第99-102页
        5.4.1 Formation of single crystalline nanoparticles第99-100页
        5.4.2 Formation of Tetrapods第100-102页
    5.5 Formation analysis of PtAgCu Tetrapods第102-107页
        5.5.1 Role of single crystallinity of the seeds第102-103页
        5.5.2 Role of KI第103-104页
        5.5.3 Role of Carbon monoxide第104-105页
        5.5.4 Under potential deposition (UPD) process第105-107页
    5.6 Formation mechanism第107-108页
    5.7 Structural analysis of PtAgCu tetrapods第108-109页
        5.7.1 Crystal structure analysis第108页
        5.7.2 Chemical structure analysis第108-109页
    5.8 Electrochemical results第109-110页
    5.9 Summary第110-111页
Conclusion第111-112页
References第112-128页
Acknowledgment第128-130页
Resume第130页

论文共130页,点击 下载论文
上一篇:纳米催化中Lewis酸碱催化活性中心的构筑与应用
下一篇:Hippo信号通路效应蛋白YAP/TAZ抑制COX-2转录的机制和功能研究