摘要 | 第1-3页 |
Abstract | 第3-8页 |
第一章 绪论 | 第8-14页 |
·课题研究背景 | 第8-9页 |
·课题研究目的和意义 | 第9-10页 |
·国内外研究现状 | 第10-13页 |
·本文的主要工作 | 第13-14页 |
第二章 相关理论 | 第14-21页 |
·数据挖掘技术 | 第14-17页 |
·数据挖掘的基本概念 | 第14页 |
·数据挖掘的特点 | 第14-15页 |
·常见的预测型知识挖掘类型 | 第15页 |
·数据挖掘的任务 | 第15-16页 |
·数据挖掘的预测过程 | 第16-17页 |
·BP神经网络理论基础 | 第17-21页 |
·人工神经网络简述 | 第17-18页 |
·BP神经网络的基本思想 | 第18页 |
·BP神经网络模型 | 第18-20页 |
·BP算法的学习过程 | 第20-21页 |
第三章 数据仓库系统设计与实现 | 第21-28页 |
·开发目标 | 第21-22页 |
·应用框架 | 第22页 |
·系统的逻辑结构 | 第22-23页 |
·联机分析应用模块 | 第23-24页 |
·设计方法 | 第24页 |
·面向税收分析预测数据仓库的实现 | 第24-28页 |
第四章 基于BP神经网络的税收收入预测模型的构建 | 第28-37页 |
·基本步骤 | 第28页 |
·样本的选取和预处理 | 第28-30页 |
·输入变量之间的相关性分析 | 第29页 |
·输入数据的预处理 | 第29-30页 |
·BP神经网络结构设计 | 第30-33页 |
·隐层数的选取 | 第30-31页 |
·隐层节点数的选取 | 第31-32页 |
·初始权值的选取 | 第32页 |
·响应函数的选取 | 第32-33页 |
·训练算法及训练参数的选择 | 第33-36页 |
·训练算法的选择 | 第33-35页 |
·训练方式的选择 | 第35页 |
·训练参数的选取 | 第35-36页 |
·训练次数的确定 | 第36页 |
·合理网络模型的确定 | 第36页 |
·模型的解释和评估 | 第36-37页 |
第五章 NLICS税收收入预测模型的实现 | 第37-46页 |
·数据源 | 第37-38页 |
·数据源总体介绍及特点 | 第37页 |
·税收收入预测指标的选择 | 第37-38页 |
·Matlab获取数据 | 第38页 |
·BP网络在税收预测中的具体应用 | 第38-39页 |
·学习样本的确定 | 第38页 |
·输入与输出变量的确定 | 第38-39页 |
·基于MATLAB神经网络工具箱的网络模型设计 | 第39-41页 |
·建立BP网络 | 第39-40页 |
·初始化权和阈值 | 第40页 |
·网络训练 | 第40页 |
·检验建立的BP网络 | 第40-41页 |
·基于历年营业税收入数据的BP网络预测模型实现案例 | 第41-46页 |
·预测步骤 | 第41页 |
·税收收入预测结果分析 | 第41-44页 |
·结果展示 | 第44-46页 |
第六章 结论 | 第46-47页 |
致谢 | 第47-48页 |
参考文献 | 第48-52页 |
攻读学位期间的研究成果 | 第52-53页 |