首页--工业技术论文--电工技术论文--输配电工程、电力网及电力系统论文--电力系统的自动化论文

M-STATCOM的建模、仿真、控制及实验

ABSTRACT第9-10页
摘要第11-13页
ACRONYMS第13-14页
TABLE OF CONTENTS第14-19页
Chapter 1:Introduction第19-48页
    1.1 Preface第19-20页
    1.2 Power quality issues第20-24页
        1.2.1 Power quality definitions第20-22页
        1.2.2 Problem Statement第22-24页
    1.3 Power System in Pakistan,Sudan and China第24-29页
        1.3.1 Pakistan (WAPDA) Power System and its Problems第24-25页
        1.3.2 Sudan power system第25-26页
        1.3.3 China power system第26-29页
    1.4 Reactive Power compensation第29-36页
        1.4.1 Concept of Reactive Power Compensation第32-33页
        1.4.2 Purpose of Reactive Power Compensation and its ways第33-34页
        1.4.3 Technology of Reactive power Compensation第34-36页
            1.4.3.1 Old Technology of Reactive Power Compensation第34页
            1.4.3.2 New Technology of Reactive Power Compensation第34-36页
    1.5 FACTS Technology for Reactive Power Compensation and System Control第36-45页
        1.5.1 Background and significance of the application of FACTS Technology第37-38页
        1.5.2 Development history and current status of FACTS technology第38-45页
    1.6 The most commonly used FACTS devices第45-46页
    1.7 Chapter Summary第46-48页
Chapter 2:Voltage sags:an elucidation causes, effects andrectification第48-60页
    2.0 Power Quality Problems第48-52页
    2.1 Voltage Sag Definition第52页
    2.2 Voltage Dip第52页
    2.3 Sources of Voltage Sags第52-53页
        2.3.1 Utility Systems第52-53页
        2.3.2 Inside Industrial Plants第53页
    2.4 Reasons of Voltage Sags第53页
    2.5 Utility Systems第53-55页
    2.6 Multi Phase Sags and Single Phase Sags第55页
    2.7 Voltage Sags Affect Production第55-56页
    2.8 Who is to held responsible?第56页
    2.9 Industrial Liability第56页
    2.10 How to increase voltage sag immunity第56-57页
    2.11 Voltage sag mitigation techniques第57页
    2.12 Solution of the problem第57页
    2.13 Project background and its Significance第57-58页
    2.14 Objectives of the research第58页
    2.15 Summary of the chapter第58-60页
Chapter 3:The Structure, Modeling, Operating Principle and Controlof M-STATCOM第60-129页
    3.1 Definition of STATCOM第60-61页
    3.2 Salient Features第61-63页
    3.3 Uses and advantages of STATCOM第63-64页
    3.4 V-I characteristic of a STATCOM第64-66页
    3.5 Comparison between STATCOM and SVC第66-67页
    3.6 Voltage Source Converter (VSC)第67-70页
    3.7 Voltage-Source Converters (VSCs) for STATCOM applications第70-72页
    3.8 Multilevel Voltage-Source Converters第72-86页
        3.8.1 Multilevel converters topologies第74-80页
            3.8.1.1. Diode-Clamped Multilevel Converter第74-75页
            3.8.1.2. Flying-Capacitor Multilevel Converter第75-77页
            3.8.1.3. P2 Multilevel Converters第77-78页
            3.8.1.4. Cascaded-Multilevel Converters with Separated DC Sources第78-80页
        3.8.2 Hybrid multilevel Converters第80-82页
            3.8.2.1. Multi-Pulse Converters第80-81页
            3.8.2.2. Mixed-Level Cascaded Converters第81-82页
        3.8.3 Comparison among multilevel converters for STATCOM Applications第82-86页
    3.9 Structure of M-STATCOM第86-89页
        3.9.1 Topology of M-STATCOM第86-88页
        3.9.2 Three relevant states of sub-modules第88-89页
    3.10 The Working principle of M-STATCOM under Static Var Generation(SVG)第89-93页
    3.11 Modeling of M-STATCOM第93-97页
    3.12 Differential equations describing the Ac and Dc sides of the STATCOM第97-98页
    3.13 Average dynamic model of three phase M-STATCOM under SVG Condition第98-99页
    3.14 M-STATCOM control system description第99-115页
        3.14.1 M-STATCOM direct current control strategy第104-109页
        3.14.2 PI controller parameter setting第109-110页
        3.14.3 Detailed Description of three phase Control block diagram for Static var Generation第110-114页
        3.14.4 Capacitor voltage control unit第114-115页
    3.15 Simulation study of 15L M-STATCOM under SVG condition第115-127页
        3.15.1 M-STATCOM static characteristics第119-123页
        3.15.2 M-STATCOM dynamic characteristics第123-127页
    Summary of the Chapter第127-129页
Chapter 4: An Overview of Modular Multilevel Converter: Principle,topologies, advantages and implementations第129-146页
    4.0 Overview of modular multilevel converter (M2C) topology第129-130页
    4.1 Basic Principle第130-131页
    4.2 Three relevant state of Sub-module第131-132页
    4.3 Switching states of the M2C第132-134页
        4.3.1 Wave synthesis第133-134页
        4.3.2 Capacitor voltage balancing technique第134页
    4.4 Topologies of M2C第134-136页
    4.5 Technological Advantages Of M2C第136-138页
    4.6 Application of M2C for FACTS第138-140页
    4.7 Implementations of M2C第140-145页
        4.7.1 Siemens implementation第140-142页
        4.7.2 ABB's implementation第142页
        4.7.3 Alstom implementation第142-143页
        4.7.4 Comparison of the different implementations第143-145页
    4.8 Summary of the Chapter第145-146页
Chapter 5:Modular Multilevel Converter's Mathematical Analysis,Modulation and Control Strategy第146-185页
    5.1 Mathematical analysis of M2C第146-155页
        5.1.1 The transient and steady state analysis of M2C's circulation current第148-151页
        5.1.2 The control of circulation current第151-153页
        5.1.3 The capacitor voltage fluctuation第153-154页
        5.1.4 Overall system stability第154-155页
    5.2 Modulation strategy第155-170页
        5.2.1 General Principles第155-156页
        5.2.2 Carrier-Based Modulation Techniques for M2C第156-157页
        5.2.3 Modulation using an Active Selection Process第157-158页
        5.2.4 Other Types of Modulation第158页
        5.2.5 Classification of the most common modulation techniques第158-161页
        5.2.6 CSPWM model第161-163页
        5.2.7 Model with 10KHz Carrier wave第163-166页
        5.2.8 Model of carrier wave with 5Khz第166-168页
        5.2.9 Model For The Carrier Wave Without Control第168-169页
        5.2.10 Another Model第169-170页
    5.3 Simulation Study第170-175页
    5.4. Experimental part第175-182页
        5.4.1 Introduction第175-176页
        5.4.2 Experiment Tools第176-182页
            5.4.2.1 AD unit第176-177页
            5.4.2.2 TMS320F2812 DSP or F2812第177-180页
            5.4.2.3 Field-programmable gate array (FPGA)第180-181页
                5.4.2.3.1 EPM240T1100C5第181页
            5.4.2.4 Dead zone block第181-182页
    5.5 Experimental Results第182-184页
    5.6 Summary of the Chapter第184-185页
Chapter 6: Conclusion and Recommendations for Future Research第185-189页
    6.1 Summary of main results第185-186页
    6.2 Contributions第186-187页
    6.3 Recommendations for future research第187-189页
References第189-210页
Appendices第210-215页
ACKNOWLEDGEMENTS第215页

论文共215页,点击 下载论文
上一篇:基于变分水平集的遥感影像分割模型及算法研究
下一篇:基于石墨烯功能材料的制备与性能研究