基于压缩感知的图像稀疏表示方法
摘要 | 第1-5页 |
ABSTRACT | 第5-9页 |
第一章 绪论 | 第9-16页 |
·引言 | 第9-10页 |
·压缩感知理论的提出背景 | 第10-12页 |
·压缩感知理论的研究意义 | 第12-13页 |
·压缩感知理论的研究现状 | 第13-15页 |
·本文主要研究内容及章节安排 | 第15-16页 |
第二章 压缩感知的理论框架 | 第16-25页 |
·预备知识及基本原理 | 第16-18页 |
·压缩感知理论的主要内容 | 第18-21页 |
·信号的稀疏表示 | 第18-19页 |
·观测矩阵 | 第19-21页 |
·信号的重构 | 第21页 |
·压缩感知理论的应用 | 第21-24页 |
·磁共振成像(MRI) | 第22页 |
·天文学 | 第22页 |
·编码纠错 | 第22-23页 |
·单像素 CS 相机 | 第23-24页 |
·本章小结 | 第24-25页 |
第三章 主要图像信号稀疏方法及比较 | 第25-37页 |
·MP 算法 | 第25-26页 |
·OMP 算法 | 第26-29页 |
·BP 算法 | 第29-31页 |
·一种基于二元树的稀疏表示 | 第31-36页 |
·算法基本思想 | 第32页 |
·算法复杂度分析 | 第32-33页 |
·仿真结果 | 第33-36页 |
·本章小结 | 第36-37页 |
第四章 主要压缩感知信号重构算法及比较 | 第37-46页 |
·OMP 重构算法 | 第37页 |
·ROMP 算法 | 第37-39页 |
·SAMP 算法 | 第39-40页 |
·一种改进的稀疏自适应匹配追踪算法 | 第40-45页 |
·稀疏度估计 | 第41页 |
·阶段变步长 | 第41-42页 |
·改进算法过程 | 第42-43页 |
·实验仿真 | 第43-45页 |
·本章小结 | 第45-46页 |
第五章 总结与展望 | 第46-49页 |
·工作总结 | 第46-47页 |
·工作展望 | 第47-49页 |
参考文献 | 第49-55页 |
攻读硕士学位期间发表的论文及所取得的研究成果 | 第55-56页 |
致谢 | 第56页 |