首页--数理科学和化学论文--数学论文--代数、数论、组合理论论文--组合数学(组合学)论文--图论论文

On the Integrability of Graphs

Acknowledgements第7-8页
Abstract第8-9页
1 Introduction第12-24页
    1.1 Root latices and the corresponding graphs第13-17页
        1.1.1 Hoffman problem第14页
        1.1.2 Exceptional graphs with smallest eigenvalue more than-2第14-16页
        1.1.3 Generalized line graphs第16-17页
    1.2 Graphs with smallest eigenvalue less than-2第17-19页
        1.2.1 Hoffman graphs with smallest eigenvalue at least-3第18-19页
    1.3 Signed graphs and root lattices第19-20页
    1.4 Integrability of graphs第20-24页
        1.4.1 A lattice related to a graph第21-24页
2 Graphs, Hoffman graphs and lattices第24-42页
    2.1 Graphs第24-29页
        2.1.1 Strongly regular graphs第27-28页
        2.1.2 Eigenvalues of a graph第28-29页
    2.2 Hoffman graphs第29-32页
    2.3 Lattices第32-42页
        2.3.1 Irreducible root lattices第33-35页
        2.3.2 s-integrability of lattices第35-36页
        2.3.3 Graphs and lattices第36-39页
        2.3.4 Hoffman graphs and lattices第39-42页
3 The integrally representable trees of norm 3第42-58页
    3.1 Some results on an integrally representable Hoffman graph (?) of norm 3第42-43页
    3.2 Tree-like Hoffman graphs第43-49页
        3.2.1 Stripped Hoffman graphs第43-44页
        3.2.2 Some results on tree-like Hoffman graphs第44-47页
        3.2.3 A family of(-3)-irreducible tree-like Hoffman graphs第47-49页
    3.3 Integrally representable tree-like Hoffman graphs第49-55页
    3.4 Seedlings第55-58页
4 On the integrability of strongly regular graphs第58-76页
    4.1 Equitable partition and quotient matrix第59-60页
        4.1.1 Designs第59-60页
    4.2 Basic results on s-integrable graphs第60-62页
    4.3 Integrable strongly regular graphs第62-65页
        4.3.1 Two classes of integrable strongly regular graphs第62-63页
        4.3.2 Integrable strongly regular graphs with smallest eigenvalue at least-2第63-64页
        4.3.3 Integrable strongly regular graphs with smallest eigenvalue at least-3第64-65页
    4.4 The complement of the Sims-Gewirtz graph第65-66页
    4.5 The Hoffman-Singleton graph第66-70页
    4.6 The complement of GQ(3,9)第70-72页
    4.7 The complement of the McLaughlin graph第72-76页
5 Conclusion, open problems and future work第76-80页
    5.1 Contribution第76-77页
    5.2 Future work第77-78页
    5.3 Open problems第78-80页
References第80-85页
Research work conducted during PhD第85页

论文共85页,点击 下载论文
上一篇:随机系统的最优控制理论、实现和应用
下一篇:子群的一些σ-性质与有限群的结构及内σ-幂零群