首页--天文学、地球科学论文--地球物理勘探论文--电法勘探论文

Techniques for Improving the Accuracy of Finite Element Solution of MT Data

摘要第4-6页
Abstract第6-7页
Chapter 1 INTRODUCTION第13-20页
Chapter 2 Electromagnetic methods第20-32页
    2.1 Electrical properties of the rocks and minerals第20-21页
    2.2 The Magnetotelluric sources第21-23页
    2.3 Magnetotellurics Application第23-24页
    2.4 The assumptions of the MT method第24-25页
    2.5 Fundamental equations of magnetotelluric method第25-32页
        2.5.1 Alternative form of Maxwell equation第26-27页
        2.5.2 Frequency domain Maxwell’s equations第27页
        2.5.3 Constitutive equations第27-28页
        2.5.4 Continuity equation第28页
        2.5.5 Boundary conditions第28-32页
Chapter 3 Magnetotelluric method第32-57页
    3.1 Introduction第32页
    3.2 Magnetotelluric transfer function第32-33页
        3.2.1 The impedance tensor第32-33页
        3.2.2 The geomagnetic transfer function第33页
    3.3 Electromagnetic induction in the Earth第33-45页
        3.3.1 EM induction in the air第33-34页
        3.3.2 Induction in 1D conductivity structures第34-42页
            3.3.2.1 Skin Depth第36-39页
            3.3.2.2. Determination of the electric and magnetic field in each layer第39-41页
            3.3.2.3. One dimensional apparent resistivity and phase第41-42页
        3.3.3 Induction in 2D Earth第42-45页
            3.3.3.1 Transverse electric mode第44页
            3.3.3.2 Transverse magnetic mode第44-45页
    3.4 Induction in anisotropic media第45-57页
        3.4.1 Electrical anisotropy structure第45-48页
            3.4.1.1 Euler angle第46-48页
        3.4.2 Induction in 1D anisotropic structures第48-52页
        3.4.3 Induction in 2D anisotropic structures第52-54页
        3.4.4. Two-dimensional apparent resistivity and phase第54-57页
Chapter 4 Magnetotellurics boundary value problem第57-63页
    4.1 Interface and boundary conditions for MT problem第58-60页
        4.1.1 Interface condition第59页
        4.1.2 Dirichlet boundary condition第59-60页
    4.2 Two Dimensional BVP第60-63页
        4.2.1 In the isotopic case第60-61页
        4.2.2 In anisotropic case第61-63页
Chapter 5 Finite element method第63-93页
    5.1 Weak form of the boundary value problem第63-64页
    5.2 Weak Form of the Two-Dimensional Boundary Value Problems第64-66页
    5.3 FE Analysis: 2-D FE Approximation using Lagrange Elements第66-67页
    5.4 Derivation of the linear equations systems第67-73页
        5.4.1 Linear equation systems in isotropic medium第67-69页
        5.4.2 Linear equation systems in the anisotropic medium第69-71页
        5.4.3 Incorporating Dirichlet boundary conditions第71-73页
            5.4.3.1. Derived field components in the isotropic case第71-72页
            5.4.3.2 Derived field component in the anisotropic case第72-73页
    5.5 High Order finite element第73-83页
        5.5.1 High order interpolation第73-80页
            5.5.1.1 First order Lagragian shape function construction第74-75页
            5.5.1.2 Second order Lagragian shape function construction第75-77页
            5.5.1.3 Cubic order Lagragian shape function construction第77-80页
        5.5.2 Reference element and its transformation to physical problem第80-82页
        5.5.3 Transformation of the weak form to the reference element第82-83页
    5.6 Finite element program第83-93页
        5.6.1 Object Oriented Principle第84-85页
        5.6.2 Object Oriented Implementation第85-87页
        5.6.3 C++ Classes used for the MT2D application第87-92页
            5.6.3.1 Class Mesh2D ()第87-89页
            5.6.3.2 Class MT()第89-90页
            5.6.3.3 Class Post()第90-91页
            5.6.3.4 Other Classes第91-92页
        5.6.4 Implemention issues for high order FEM第92-93页
Chapter 6 Numerical solution for convergence study of Magnetotellurics boundary value problems第93-121页
    6.1 2D homogeneous Half-Space Model: Comparison with the Analytical solution第93-94页
        6.1.1 Introduction to convergence study第93-94页
        6.1.2 Mesh Refinement Process第94页
        6.1.3 Increasing the Element Order第94页
    6.2 Hp-convergence Analysis第94-102页
        6.2.1 Validation: Resistive Earth第95页
        6.2.2 h-Convergence: Linear第95-97页
        6.2.3 High Order Convergence analysis第97-98页
        6.2.4 Model discretization第98-101页
            6.2.4.1 Linear element第99页
            6.2.4.2 Quadratic element第99-100页
            6.2.4.3 Cubic order第100页
            6.2.4.4 Fourth order第100-101页
        6.2.5 Frequency range validation第101-102页
    6.3 Conductive Earth第102-109页
        6.3.1 Hp-Convergence Analysis第102-103页
        6.3.2 h-Convergence: Linear element第103-104页
        6.3.3 p-Convergence: High order element第104页
        6.3.4 Discretization with linear elements第104-105页
        6.3.5 High order discretization第105-109页
            6.3.5.1 Linear element第105-106页
            6.3.5.2 Second order第106-107页
            6.3.5.3 Third order第107页
            6.3.5.4 Fourth order第107-108页
            6.3.5.5 Frequency range validation第108-109页
    6.4 Comparison with 2D benchmark numerical solutions第109-111页
        6.4.1 The COMMEMI 2D-1 model第109-110页
        6.4.2 COMMEMI 2D-2 model第110-111页
    6.5 Numerical solution of the Anisotropic structures第111-116页
        6.5.1 One-Dimensional Anisotropic modeling第111-116页
            6.5.1.1 Layer Model 1第111-113页
            6.5.1.2 Layered Model2第113-116页
    6.6 Two-Dimensional Anisotropy results第116-120页
        6.6.1 Anisotropic Homogeneous Earth第116-117页
        6.6.2 Horizontal anisotropy第117-120页
            6.6.2.1 2D isotropic slab embedded in a Horizontal anisotropy half-space第118-119页
            6.6.2.2 2D anisotropic slab embedded in a Horizontal anisotropy half-space第119-120页
    6.7 General Remarks第120-121页
Chapter 7 Conclusion第121-123页
Acknowledgements第123-124页
REFERENCES第124-131页
Appendix第131-144页

论文共144页,点击 下载论文
上一篇:天津地区雾迷山组热储地热回灌研究
下一篇:华北平原典型区地下水稀土元素的分布特征及其与铁、锰络合反应的模拟研究