首页--数理科学和化学论文--力学论文--固体力学论文

软杆中孤立波及非线性介质中高阶谐波的理论模拟

ACKNOWLEDGEMENTS第7-9页
ABSTRACT第9-11页
摘要第12-23页
CHAPTER 1 INTRODUCTION第23-49页
    1.1 Background第23-25页
    1.2 Wave propagation in soft materials第25-37页
        1.2.1 Constitutive relations第26-31页
        1.2.2 Wave propagation of small amplitude superimposed on finite pre-deformation第31-34页
        1.2.3 Solitary waves第34-37页
    1.3 Nonlinear ultrasonic technique and its' application第37-45页
        1.3.1 Harmonics generated by quadratic and cubic nonlinearities第38-42页
        1.3.2 Mixing wave technique第42-44页
        1.3.3 Scattering and reflection from a region of nonlinear material第44-45页
    1.4 Objectives and outline第45-49页
PART 1 SOLITARY WAVES PROPAGATING IN SOFT BARS第49-109页
    CHAPTER 2 ADJUSTABLE SOLITARY WAVES IN ELECTROACTIVE RODS第51-85页
        2.1 Introduction第51-52页
        2.2 Nonlinear framework of electroelasticity第52-55页
        2.3 Model Equations第55-62页
        2.4 Linear dispersion relations第62-66页
        2.5 The far-field equation第66-73页
        2.6 Numerical investigation and discussions第73-79页
            2.6.1 The linear case第73-75页
            2.6.2 The nonlinear case第75-79页
        2.7 Conclusions第79-80页
        Appendix 2A第80-81页
        Appendix 2B第81-83页
        Appendix 2C第83-85页
    CHAPTER 3 KINK AND KINK-LIKE WAVES IN PRE-STRETCHED MOONEY-RIVLIN VISCOELASTIC RODS第85-109页
        3.1 Introduction第85-86页
        3.2 Preliminaries第86-94页
            3.2.1 Basic formulations第86-88页
            3.2.2 Longitudinal waves with small but finite amplitude第88-94页
        3.3 The far-field equation第94-98页
            3.3.1 Derivation of the KdV-Bergers equation第94-96页
            3.3.2 Travelling wave solutions第96-98页
        3.4 Numerical results and discussions第98-105页
        3.5 Concluding remarks第105-106页
        Appendix 3A第106页
        Appendix 3B第106-109页
PART 2 HARMONIC GENERATION IN NONLINEAR MEDIA第109-261页
    CHAPTER 4 INTERESTING EFFECTS IN HARMONIC GENERACTIONBY PLANE ELASTIC WAVES第111-131页
        4.1 Introduction第111-112页
        4.2 Governing Equations第112-116页
        4.3 Primary transverse wave第116-118页
        4.4 Primary longitudinal wave第118-121页
        4.5 Reflection of second harmonics from an interface第121-127页
            4.5.1 Incident longitudinal wave第122-123页
            4.5.2 Incident transverse wave第123-125页
            4.5.3 Incidence of two longitudinal waves第125-127页
        4.6 Conclusions第127-128页
        Appendix 4A第128-131页
    CHAPTER 5 FAR-FIELD RESONANT THIRD HARMONIC SURFACE WAVE ON A HALF-SPACE OF INCOMPRESSIBLE MATERIAL OF CUBIC NONLINEARITY第131-149页
        5.1 Introduction第131-132页
        5.2 Constitutive relations for nonlinear material behavior第132-134页
        5.3 Equations of motion of a surface wave第134-135页
        5.4 Surface wave propagation第135-145页
        5.5 Transmission through an interface with linear material第145-147页
        5.6 Concluding comments第147-149页
    CHAPTER 6 ANALYSIS OF HARMONICS PROPAGATINGH IN PIPES OF QUADRATIC MATERIAL NONLINEARITY USING SHELL THEORY第149-173页
        6.1 Introduction第149-150页
        6.2 Basic equations of axisymmetric motion in a pipe derived from nonlinear shell theory第150-159页
        6.3 The mixing of longitudinal and torsional waves第159-163页
        6.4 The self-interaction of longitudinal waves in a pipe第163-171页
        6.5 Conclusions第171页
        Appendix 6A第171-173页
    CHAPTER 7 REFLECTION OF ULTRASOUND FROM A REGION OFCUBIC MATERIAL NONLINEARITY DUE TO HARMONIC GENERATION第173-197页
        7.1 Introduction第173-174页
        7.2 Governing equations第174-179页
            7.2.1 Primary longitudinal wave第175-177页
            7.2.2 Primary transverse wave第177-179页
        7.3 Generation of compensatory waves at the interface第179-183页
            7.3.1 Incidence of a longitudinal wave第180-181页
            7.3.2 Incidence of a transverse wave第181-183页
        7.4 Backscattering from a small zone of cubic material nonlinearity第183-191页
            7.4.1 Incidence of a longitudinal wave第183-189页
            7.4.2 Incidence of a transverse wave第189-191页
        7.5 Determination of the backscattered wave based on the compensatory wave model第191-194页
        7.6 Conclusions第194-197页
    CHAPTER 8 THE EFFECT OF CUBIC MATERIAL NONLINEARITY ON THE PROPAGATION OF TORSIONAL WAVE MODES IN APIPE第197-217页
        8.1 Introduction第197-198页
        8.2 Governing equations第198-201页
        8.3 Higher harmonics第201-204页
        8.4 Backscattering from a zone of nonlinearity第204-206页
        8.5 Use of the elastodynamic reciprocity theorem第206-209页
        8.6 Increase of the amplitude of the backscattered wave第209-214页
        8.7 Conclusions第214-217页
    CHAPTER 9 INTERSECTION OF TWO ELASTIC WAVES AT THE REGION OF MATERIAL NONLINEARITY IN AN ELASTIC LAYER第217-253页
        9.1 Introduction第217-218页
        9.2 Basic equations第218-224页
            9.2.1 Wave motion in an elastic layer with quadratic material nonlinearity第218-220页
            9.2.2 Scattering of lowest SH waves from a local zone of material nonlinearity第220-224页
        9.3 Use of elastodynamic reciprocity relation第224-234页
            9.3.1 Wave motion excited by a point force in x_1-direction第224-226页
            9.3.2 The body force in x_1-direction第226-227页
            9.3.3 The generation of Lamb wave第227-232页
            9.3.4 The generation of SH wave第232-234页
        9.4 Total displacement field of scattered wave第234-239页
            9.4.1 Wave generation by the force in x_2-direction第234-236页
            9.4.2 Wave generation by the surface traction t_3第236-238页
            9.4.3 The total expressions of the scattered waves第238-239页
        9.5 Numerical results and discussion第239-244页
        9.6 Concluding remarks第244-246页
        Appendix 9A第246-248页
        Appendix 9B第248-250页
        Appendix 9C第250-253页
    CHAPTER 10 Concluding remarks and future works第253-261页
        10.1 Concluding remarks第253-258页
        10.2 Future works第258-261页
REFERENCES第261-273页
BIOGRAPHY第273-274页

论文共274页,点击 下载论文
上一篇:关于自仿测度的谱性与完全正映射的研究
下一篇:空化双气泡之间的相互作用及气泡形状不稳定性研究