首页--数理科学和化学论文--数学论文--数学分析论文--微分方程、积分方程论文

微分方程的李对称

致谢第3-4页
Acknowledgements第4-5页
摘要第5-6页
Abstract第6页
详细的总结(Detailed summary)第7-15页
Chapter 1 Introduction第15-20页
    1.1 Research background第15页
    1.2 Other Research in the area第15-16页
    1.3 Research significance第16-17页
    1.4 Research objectives第17-18页
    1.5 Outline of Thesis第18-20页
Chapter 2 Lie symmetries and Point transformations for Invariant functions第20-40页
    2.1 Introduction第20页
    2.2 Point Transformations第20-22页
    2.3 Invariant functions第22页
    2.4 Infinitesimal Point Transformations第22-24页
    2.5 Lie Algebra第24-25页
    2.6 Prolongation of point transformations第25-27页
    2.7 Lie symmetries of ordinary differential equations (ODEs)第27-32页
    2.8 Lie symmetries of partial differential equations (PDEs)第32-35页
    2.9 Noether point symmetries of ODEs第35-38页
    2.10 Noether symmetries of PDEs第38-39页
    Conclusion第39-40页
Chapter 3 Lie point symmetries of an ordinary group of Partial Differential Equations(PDEs)第40-52页
    3.1 Introduction第40页
    3.2 Lie symmetries of a 2nd order PDEs第40-43页
    3.3 Linear function G ( , p, ) and Lie symmetries conditions第43-45页
    3.4 Lie symmetries of Poisson equation第45-46页
    3.5 Lie symmetries of Laplace equation第46页
    3.6 Lie symmetries of the conformal Poisson equation第46-47页
    3.7 Lie symmetries of conformal Laplace equation within Riemannian spaces第47-48页
    3.8 Heat equation by a flux in a Riemannian space第48-51页
    3.9 Conclusion第51-52页
Chapter 4 Lie point symmetries of Klein Gordon and Schr?dinger equations第52-63页
    4.1 Introduction第52-53页
    4.2 Noether point symmetries of conformal Lagrangian in Riemannian space第53-55页
    4.3 Lie symmetries of Klein-Gordon equation第55-56页
    4.4 Lie point symmetries of conformal Klein Gordon equation第56-58页
    4.5 Lie point symmetries of Schr?dinger equation第58-59页
    4.6 Klein Gordon equation and sl(2, R) algebra第59页
    4.7 Oscillator system第59-60页
    4.8 Kepler Ermakov potential by means of an oscillator term第60-62页
    4.9 Conclusion第62-63页
Chapter 5 Generalization of Kepler-Ermakov Dynamical System in a Riemannian space第63-76页
    5.1 Introduction第63-64页
    5.2 Lie symmetries of Kepler Ermakov system第64-65页
    5.3 Generalization of the two-dimensional KEDS第65-69页
    5.4 Generalization of the three-dimensional KEDS第69页
    5.5 The three-dimensional KEDS of class I第69-70页
    5.6 The three-dimensional KEDS of class II第70-71页
    5.7 The -dimensional Riemannian KEDS第71-72页
    5.8 The non-Hamiltonian Riemannian KEDS of n-dimensional第72-73页
    5.9 The Conservative Riemannian KEDS of n-dimensional space第73-75页
    5.10 Conclusion第75-76页
Chapter 6 Reduction of Type-II Hidden symmetries of Laplace equation and Homogeneous heatequation第76-90页
    6.1 Introduction第76-77页
    6.2 In general Riemannian spaces Lie point Symmetries of the Laplace equation第77-78页
    6.3 In general Riemannian spaces reduction of the Laplace equation第78页
    6.4 A gradient HV introducing by Riemannian space第78-79页
    6.5 A gradient KV introducing by Riemannian spaces第79-80页
    6.6 A gradient sp.CKVs introducing by Riemannian space第80-83页
    6.7 In definite Riemannian space reduction of Homogeneous Heat equation第83-84页
    6.8 In a space the heat equation which introduce a gradient KV第84-86页
    6.9 In a space the heat equation which introduce a gradient HV第86-88页
    Conclusion第88-90页
Chapter 7 Lie symmetries and Painlevé analysis for a (2+1)-dimensional nonlinear Schr?dingerequation第90-101页
    7.1 Introduction第90-91页
    7.2 Painlevé analysis for a (2+1) dimensional NLSE第91-93页
    7.3 Lie symmetry algebra for a (2+1) dimensional NLSE第93-98页
    7.4 Hirota’s Bilinear form and some new special solutions of Eq.(7.1)第98-100页
    Conclusions第100-101页
Chapter 8 Summary and Conclusions第101-105页
References第105-115页
Author’s resume第115-118页
学位论文数据集第118页

论文共118页,点击 下载论文
上一篇:1-可平面图的若干染色问题研究
下一篇:用手征格点费米子研究强相互作用