首页--天文学、地球科学论文--地球物理学论文--大地(岩石界)物理学(固体地球物理学)论文--地震学论文--地震波、地震震级、震源物理论文

求解波动方程的龙格—库塔型方法及其地震波传播模拟

摘要第1-5页
Abstract第5-10页
第1章 引言第10-22页
   ·问题背景第10-11页
   ·弹性波方程第11-13页
     ·均匀各向同性介质中的弹性波方程第11-12页
     ·均匀横向各向同性介质中的弹性波方程第12-13页
     ·非均匀介质中的声波方程第13页
   ·数值方法第13-20页
     ·有限差分方法的发展第13-14页
     ·Lax-Wendroff 修正方法第14-16页
     ·位移——应力交错网格方法第16-17页
     ·求解常微分方程的Runge-Kutta 方法第17-20页
     ·近似空间高阶偏导数的插值外推方法第20页
   ·本文的主要内容和安排第20-22页
第2章 空间高阶导数的计算第22-29页
   ·一维计算公式第22-23页
   ·二维计算公式第23-25页
   ·三维计算公式第25-29页
第3章 求解波动方程的Runge-Kutta 方法第29-53页
   ·求解一维问题的Runge-Kutta 方法第29-31页
   ·求解二维问题的Runge-Kutta 方法第31-33页
   ·稳定性分析第33-35页
     ·一维稳定性条件第33-35页
     ·二维稳定性条件第35页
   ·误差分析第35-39页
     ·理论误差分析第35-36页
     ·数值误差第36-39页
   ·频散分析第39-48页
     ·一维数值频散分析第39-42页
     ·二维数值频散分析第42-48页
   ·波场模拟第48-51页
   ·本章小结第51-53页
第4章 求解三维波动方程的Runge-Kutta 方法第53-69页
   ·求解三维问题的Runge-Kutta 方法第53-55页
   ·稳定性分析第55-56页
   ·误差分析第56-59页
     ·理论误差分析第56页
     ·数值误差第56-59页
   ·频散分析第59-62页
   ·波场模拟第62-66页
   ·本章小结第66-69页
第5章 加权的Runge-Kutta 方法第69-82页
   ·基于Runge-Kutta 方法的一种加权算法第69-71页
   ·稳定性条件第71-72页
     ·一维加权Runge-Kutta 方法的稳定性条件第71页
     ·二维加权Runge-Kutta 方法的稳定性条件第71-72页
   ·波场模拟第72-81页
   ·本章小结第81-82页
第6章 结论第82-84页
   ·全文总结第82-83页
   ·后续研究工作第83-84页
参考文献第84-88页
致谢第88-89页
附录A 二维Runge-Kutta 方法的稳定性条件第89-92页
附录B 三维Runge-Kutta 方法的增长矩阵第92-95页
附录 C 加权 Runge-Kutta 方法的最大 Courant 数第95-97页
个人简历、在学期间发表的学术论文与研究成果第97-98页

论文共98页,点击 下载论文
上一篇:黄河平滩流量的计算方法及应用研究
下一篇:半封闭型海湾水环境参数时空变化的研究