摘要 | 第1-5页 |
ABSTRACT | 第5-8页 |
第一章 绪论 | 第8-16页 |
·研究背景及意义 | 第8页 |
·移动机器人分类和国内外发展 | 第8-11页 |
·移动机器人的分类 | 第8-9页 |
·国内外研究现状 | 第9-11页 |
·移动机器人定位方法 | 第11-14页 |
·本文的主要工作与成果 | 第14-16页 |
第二章 移动机器人定位相关模型 | 第16-24页 |
·坐标系模型 | 第16页 |
·环境地图模型 | 第16-17页 |
·移动机器人物体模型 | 第17-18页 |
·里程计模型 | 第18-19页 |
·里程计模型的建立 | 第18-19页 |
·里程计的误差分析 | 第19页 |
·运动模型 | 第19-20页 |
·传感器观测模型 | 第20-21页 |
·数据关联模型 | 第21-23页 |
·数据关联过程 | 第21-22页 |
·门限过滤 | 第22-23页 |
·关联矩阵 | 第23页 |
·本章小结 | 第23-24页 |
第三章 基本粒子滤波定位 | 第24-39页 |
·前言 | 第24页 |
·状态估计理论 | 第24-29页 |
·贝叶斯滤波 | 第24-27页 |
·卡尔曼滤波 | 第27-28页 |
·扩展卡尔曼滤波 | 第28-29页 |
·UKF滤波 | 第29页 |
·基本粒子滤波器 | 第29-35页 |
·蒙特卡洛方法 | 第30-31页 |
·贝叶斯重要性采样(BIS)算法 | 第31-32页 |
·顺序重要性采样(SIS)算法 | 第32-33页 |
·存在的问题 | 第33-34页 |
·基本粒子滤波算法的步骤 | 第34-35页 |
·基本粒子滤波定位算法 | 第35-37页 |
·马尔可夫定位 | 第35-36页 |
·粒子滤波定位 | 第36-37页 |
·本章小结 | 第37-39页 |
第四章 改进粒子滤波算法 | 第39-52页 |
·MCMC算法原理 | 第39-40页 |
·基于MH的粒子滤波算法 | 第40-41页 |
·Extended Kalman Particle Filter | 第41-43页 |
·The Unscented Particle Filter | 第43-48页 |
·UT变换 | 第43-44页 |
·对称采样策略和UKF算法 | 第44-47页 |
·基于UKF的粒子滤波算法算法 | 第47-48页 |
·仿真实验及性能分析 | 第48-50页 |
·本章小结 | 第50-52页 |
第五章 基于改进粒子滤波算法的移动机器人定位研究 | 第52-64页 |
·引言 | 第52页 |
·激光测距模型及地图的描述 | 第52-55页 |
·激光测距模型 | 第52-53页 |
·激光雷达路标匹配研究 | 第53-55页 |
·地图描述 | 第55页 |
·机器人运动模型与观测模型 | 第55-56页 |
·仿真实验 | 第56-63页 |
·仿真实验环境 | 第56-57页 |
·基于UPF-MH的机器人定位算法流程 | 第57-58页 |
·实验结果 | 第58-63页 |
·本章小结 | 第63-64页 |
第六章 总结与展望 | 第64-66页 |
·总结 | 第64页 |
·展望 | 第64-66页 |
参考文献 | 第66-70页 |
附录:UPF-MH算法的MATLAB程序 | 第70-74页 |
致谢 | 第74-75页 |
作者攻读学位期间发表的学术论文目录 | 第75页 |