首页--数理科学和化学论文--运筹学论文--规划论(数学规划)论文--多目标规划论文

对称可微广义B-(p,r)不变凸多目标规划的最优性和对偶性

摘要第1-5页
Abstract第5-7页
引言第7-8页
第一章 概述第8-12页
 §1.1 研究意义及现状第8-10页
 §1.2 多目标最优化问题的解第10页
 §1.3 本文研究的主要内容及成果第10-12页
第二章 广义 B_s ( p ,r) 不变凸多目标规划的最优性和对偶性第12-32页
 §2.1 数学模型第12页
 §2.2 对称梯度的概念第12-13页
 §2.3 B_s ( p ,r) 不变凸函数的概念第13-14页
 §2.4 B_s ( p ,r) 不变凸多目标规划解的最优性条件第14-18页
 §2.5 B_s ( p ,r) 不变凸多目标规划的 Wolfe 型对偶第18-21页
 §2.6 B_s ( p ,r) 不变凸多目标规划的 Mond-Weir 型对偶第21-26页
 §2.7 B_s ( p ,r) 不变凸多目标分式规划的鞍点定理第26-32页
第三章 广义一致 B_s ( p ,r) 不变凸多目标规划的最优性和对偶性第32-49页
 §3.1 广义一致 B_s ( p ,r) 不变凸函数的概念第32-34页
 §3.2 广义一致 B_s ( p ,r) 不变凸多目标规划解的最优性条件第34-38页
 §3.3 广义一致 B_s ( p ,r) 不变凸多目标规划的对偶性第38-43页
 §3.4 广义一致 B s ( p ,r) 不变凸多目标分式规划的鞍点定理第43-49页
第四章 结论与工作展望第49-50页
参考文献第50-54页
致谢第54-55页
读研期间发表的论文第55页

论文共55页,点击 下载论文
上一篇:关于几类余弦算子函数拓扑的研究
下一篇:包含Smarandache相关函数及序列的均值分布问题