摘要 | 第1-5页 |
Abstract | 第5-7页 |
目录 | 第7-10页 |
1 绪论 | 第10-12页 |
·研究背景与意义 | 第10-11页 |
·论文组织 | 第11-12页 |
2 行人检测技术综述 | 第12-22页 |
·研究方法 | 第12-13页 |
·基于模板轮廓匹配的方法 | 第12页 |
·基于机器学习的方法 | 第12-13页 |
·行人检测中的特征提取 | 第13-18页 |
·基于整体特征的方法 | 第15-17页 |
·Haar-like 特征 | 第15页 |
·HoG 特征 | 第15-17页 |
·基于多部位的方法 | 第17-18页 |
·自适应组合分类器 | 第17页 |
·基于贝叶斯推断的组合算法 | 第17-18页 |
·研究难点 | 第18-21页 |
·本章小结 | 第21-22页 |
3 基于分层 HoG 特征的行人检测 | 第22-34页 |
·样本选取 | 第22-23页 |
·行人样本选取 | 第22页 |
·非行人样本选取 | 第22-23页 |
·分层 HoG 特征描述 | 第23-24页 |
·Gentle AdaBoost 分类器模型 | 第24-27页 |
·弱分类器的表示形式 | 第25-26页 |
·强分类器的表示形式 | 第26页 |
·级联分类器的结构 | 第26-27页 |
·Gentle AdaBoost 分类器的训练过程 | 第27-31页 |
·弱分类器的训练过程与分析 | 第27-29页 |
·强分类器的训练过程与分析 | 第29-31页 |
·级联分类器的训练过程与分析 | 第31页 |
·实验结果与分析 | 第31-33页 |
·分类器的性能指标 | 第31-32页 |
·实验结果 | 第32-33页 |
·本章小结 | 第33-34页 |
4 基于 SVM 特征预过滤的 Gentle AdaBoost 行人检测 | 第34-45页 |
·线性 SVM | 第34-37页 |
·线性可分情况 | 第34-36页 |
·线性不可分 | 第36-37页 |
·基于线性 SVM 特征预过滤的分类器模型 | 第37-44页 |
·R-SVM 的核心思想 | 第37-39页 |
·基于线性 SVM 的特征预过滤的分类器模型算法描述 | 第39-40页 |
·实验结果与分析 | 第40-44页 |
·本章小结 | 第44-45页 |
5 基于固定摄像头的视频行人检测 | 第45-56页 |
·基于静态图片的人体检测 | 第45-50页 |
·检测的具体过程 | 第46-47页 |
·多重尺度目标定位 | 第47-50页 |
·用于目标定位的二元分类器 | 第47页 |
·非最大值抑制原理 | 第47-49页 |
·非最大值抑制的实现 | 第49-50页 |
·基于固定摄像头的视频行人检测 | 第50-54页 |
·背景建模 | 第50-51页 |
·二值图像处理 | 第51-53页 |
·形态学处理 | 第51-52页 |
·连通区域标记 | 第52-53页 |
·运动区域检测结果 | 第53-54页 |
·本章小结 | 第54-56页 |
6 总结与展望 | 第56-58页 |
·本文的工作及贡献 | 第56页 |
·工作展望 | 第56-58页 |
参考文献 | 第58-62页 |
致谢 | 第62页 |