摘要 | 第1-11页 |
ABSTRACT | 第11-12页 |
第一章 绪论 | 第12-20页 |
·语音识别技术的发展历程 | 第12-13页 |
·国外研究史 | 第12-13页 |
·国内研究史 | 第13页 |
·语音识别技术研究现状 | 第13-16页 |
·特征提取与变换 | 第13-14页 |
·声学模型与模式匹配 | 第14-15页 |
·语言模型与语言处理 | 第15-16页 |
·连续语音识别面临的问题 | 第16-17页 |
·本文的工作和主要创新点 | 第17-18页 |
·本课题的研究意义 | 第18-19页 |
·本文内容安排 | 第19-20页 |
第二章 基于HMM 的连续语音识别关键技术及系统实现 | 第20-37页 |
·连续语音识别的统计模型描述 | 第20页 |
·隐马尔可夫模型(HMM) | 第20-25页 |
·HMM 的定义 | 第20-21页 |
·HMM 的三个基本问题及其解决方案 | 第21-24页 |
·HMM 的类型 | 第24-25页 |
·嵌入式HMM 模型参数重估算法 | 第25-28页 |
·基本算法和流程 | 第25-26页 |
·前向后向变量的计算 | 第26-27页 |
·嵌入式算法中的参数估计 | 第27-28页 |
·特征提取 | 第28-33页 |
·共振峰参数 | 第28-31页 |
·LPCC 参数 | 第31页 |
·MFCC 参数 | 第31-32页 |
·PLP 参数 | 第32-33页 |
·HTK Toolkit 简介 | 第33-34页 |
·性能评估 | 第34-36页 |
·实验语料 | 第34页 |
·评估指标 | 第34页 |
·特征组合 | 第34-35页 |
·模型基元与模型结构 | 第35页 |
·模型训练 | 第35页 |
·实验结果 | 第35-36页 |
·结论 | 第36-37页 |
第三章 基于听觉事件检测的汉语语音声韵切分 | 第37-50页 |
·引言 | 第37-38页 |
·听觉事件检测 | 第38-41页 |
·基于耳蜗滤波的听觉事件检测 | 第38-40页 |
·基于语谱图的听觉事件检测 | 第40-41页 |
·候选边界检测 | 第41-42页 |
·声韵切分 | 第42-46页 |
·清音声母检测 | 第43-44页 |
·浊辅音声母检测 | 第44-45页 |
·零声母音节和普通韵母检测 | 第45-46页 |
·测试评估 | 第46-49页 |
·实验语料 | 第47页 |
·评估指标 | 第47页 |
·实验结果 | 第47-49页 |
·结论 | 第49-50页 |
第四章 基于切分的帧异步搜索 | 第50-61页 |
·引言 | 第50-51页 |
·帧同步Viterbi 搜索 | 第51-54页 |
·Viterbi 算法 | 第52-53页 |
·Viterbi-Beam 算法 | 第53-54页 |
·Viterbi-Level Building 算法 | 第54页 |
·声学层和语言层解码 | 第54-59页 |
·声学层解码 | 第55-57页 |
·语言层解码 | 第57-59页 |
·测试评估 | 第59-60页 |
·实验准备 | 第59页 |
·识别器构建 | 第59页 |
·实验结果 | 第59-60页 |
·结论 | 第60-61页 |
结束语 | 第61-63页 |
论文工作总结 | 第61页 |
进一步研究方向 | 第61-63页 |
参考文献 | 第63-68页 |
作者简历 攻读硕士学位期间完成的主要工作 | 第68-69页 |
致谢 | 第69页 |