首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

Robust Visual Techniques for Robotics Based on Machine Learning

摘要第5-7页
ABSTRACT第7-8页
PREFACE第17-18页
CHAPTER 1 INTRODUCTION第18-49页
    1.1 GENERAL APPROACHES TO ROBOTIC VISION第22-29页
        1.1.1 Model-based Vision第23-24页
        1.1.2 Object Acquisition and Modeling第24-27页
        1.1.3 Object Recognition and Reconstruction第27-29页
    1.2 FEATURE EXTRACTION第29-32页
        1.2.1 The Hough Transform第30-31页
        1.2.2 Contour Extraction第31页
        1.2.3 Image Moments第31-32页
    1.3 OBJECT CLASSIFICATION AND LOCALIZATION第32-36页
        1.3.1 2-Dimensional Classification第33-34页
        1.3.2 3-Dimensional Classification第34-36页
    1.4 LITERATURE REVIEW第36-42页
        1.4.1 Target Modeling第39-40页
        1.4.2 Target Representation第40-41页
        1.4.3 Target Search Strategy第41页
        1.4.4 Model Update Strategy第41-42页
        1.4.5 Context Modeling and Multi-tracker Fusion Schemes:第42页
    1.5 PROBLEM STATEMENT第42-45页
    1.6 THESIS CONTRIBUTIONS第45-47页
    1.7 DISSERTATION ROADMAP第47-49页
CHAPTER 2 A ROBUST AND GENERIC 3D TRACKING FRAMEWORK FORREAL-TIME ROBOTICS SYSTEMS第49-67页
    2.1 CHAPTER OVERVIEW第49页
    2.2 INTRODUCTION第49-51页
    2.3 RESEARCH MOTIVATION第51-53页
    2.4 PROPOSED SCHEME第53-60页
        2.4.1 Circulant Structure Kernel Tracking with Adaptive Online Learning第54-56页
        2.4.2 Depth Incorporation and Feedback towards Adaptive Adaptive-Robust Visual Tracking第56-60页
    2.5 ROBUSTNESS EVALUATION AND ANALYSES第60-65页
        2.5.1 Experimental Verification with State-of-the-Art第61-62页
        2.5.2 Experimental Results and Analysis第62-65页
    2.6 CHAPTER SUMMARY第65-67页
CHAPTER 3 A ROBUST PREDICTIVE MULTI-OBJECT TRACKING SCHEMEFOR REAL-TIME SYSTEMS第67-77页
    3.1 CHAPTER OVERVIEW第67页
    3.2 INTRODUCTION第67-69页
    3.3 THE PROPOSED DCIDPF ALGORITHM第69-74页
        3.3.1 Modeling the Real-time Interaction Amongst Targets第69-70页
        3.3.2 Estimation of the State Transition Density第70页
        3.3.3 The Proposal Distribution Guided by CamShift and SVM第70-71页
        3.3.4 Computing Local Likelihood Based on Two Descriptors第71-72页
        3.3.5 Estimating the Interactive Likelihood第72页
        3.3.6 Optimization of the Proposed Algorithm第72-74页
    3.4 EXPERIMENTAL ANALYSES第74-76页
        3.4.1 Evaluating Robustness of Proposed Scheme第74-75页
        3.4.2 Evaluating Efficiency in Particle Selection第75-76页
        3.4.3 Evaluating Computational Cost and Speed第76页
    3.5 CHAPTER SUMMARY第76-77页
CHAPTER 4 TOWARDS OCCLUSION HANDLING IN VISUAL TRACKING-BY-DETECTION SYSTEMS第77-92页
    4.1 OVERVIEW第77页
    4.2 INTRODUCTION第77-80页
    4.3 THE PROPOSED DRIFT AND OCCLUSION ROBUST SCHEME第80-86页
        4.3.1 Depth-Based GMM Optimization第81-83页
        4.3.2 Adaptive Circulant Structure Kernel for Visual Tracking第83-84页
        4.3.3 Patch-Based Target Modeling and Occlusion Estimation第84-86页
    4.4 EXPERIMENTAL VERIFICATION AND ANALYSES第86-90页
        4.4.1 Experimental Setup第87页
        4.4.2 Experimental Discussion and Analysis第87-90页
    4.5 CHAPTER SUMMARY第90-92页
CHAPTER 5 A FAST AND EFFICIENT MULTI-CLASS CLASSIFICATION SCHEMEFOR ROBOTICS SYSTEMS第92-105页
    5.1 OVERVIEW第92页
    5.2 INTRODUCTION第92-93页
    5.3 Background Review第93-94页
    5.4 PROPOSED REAL-TIME CLASSIFICATION SCHEME第94-102页
        5.4.1 Image Acquisition第94-96页
        5.4.2 Sequence Optimization第96页
        5.4.3 Target Segmentation第96-98页
        5.4.4 Target Feature Extraction第98-102页
        5.4.5 Classifier Learning第102页
    5.5 EXPERIMENTAL ANALYSES AND DISCUSSION第102-104页
    5.6 CHAPTER SUMMARY第104-105页
CHAPTER 6 TOWARDS 3D ROBOTIC VISION: A ROBUST 3D MULTI-STAGEOBJECT RECOGNITION FRAMEWORK FOR ROBOTICS第105-117页
    6.1 OVERVIEW第105页
    6.2 INTRODUCTION第105-108页
    6.3 BACKGROUND REVIEW第108-109页
    6.4 THE PROPOSED ROBUST 3D RECOGNITION SCHEME第109-113页
        6.4.1 Multi-Channel CNN Framework第109-111页
        6.4.2 The Conventional Triplet Loss Function第111-112页
        6.4.3 The Proposed Triplet Loss Function第112页
        6.4.4 Network Training第112-113页
    6.5 EXPERIMENTAL ANALYSES AND DISCUSSION第113-115页
        6.5.1 Data Preparation and Augmentation第113-114页
        6.5.2 Results and Discussion第114-115页
    6.6 CHAPTER SUMMARY第115-117页
CHAPTER 7 CONCLUSIONS第117-121页
REFERENCES第121-141页
攻读博士学位期间取得的研究成果第141-142页
APPENDIX 1 BIBLIOGRAPHY第142-143页
APPENDIX 2 SHORT BIOGRAPHY第143-145页
DEDICATION第145-146页
LIST OF ACRONYMS AND ABBREVIATIONS第146-147页
ACKNOWLEDGEMENTS第147-148页
附件第148页

论文共148页,点击 下载论文
上一篇:不确定TOP-K查询处理关键技术研究
下一篇:非理想网络环境下多智能体系统的趋同控制研究