首页--数理科学和化学论文--化学论文--物理化学(理论化学)、化学物理学论文

Roles of Cu-based Cocatalysts in the Photocatalytic Systems for Hydrogen Evolution from Water

ABSTRACT第5-7页
Chapter 1: Introduction第12-32页
    1.1. Background第12-13页
    1.2. Progress in the research on TiO_2 and SrTiO_3第13-29页
        1.2.1. Principle of photocatalytic degradation of organic pollutants第13-14页
        1.2.2. Principle of photocatalytic hydrogen evolution from water第14-16页
        1.2.3. TiO_2 and SrTiO_3第16-17页
        1.2.4. Drawbacks of TiO_2 and SrTiO_3第17-18页
        1.2.5. Enhancement of photocatalytic activity of TiO_2 and SrTiO_3第18-25页
            1.2.5.1. Reducing recombination of e~-/h~+ pair第18-21页
                1. Modifying with metal第18-19页
                2. Doping with metal or non-metal elements第19页
                3. Coupling with other semiconductors第19-21页
            1.2.5.2. Adding electron donors into the reaction solution第21-22页
            1.2.5.3. Study on the visible photocatalysts based on TiO_2 and SrTiO_3第22-25页
                1. TiO_2 and SrTiO_3 doped with metal or non-metal第22-23页
                2. TiO_2 and SrTiO_3 sensitized with dyes or narrow ban gap semiconductor第23-25页
        1.3. Carbon nanotubes第25-29页
            1.3.1. Classification and structure of carbon nanotubes第26-28页
            1.3.2. Electronic properties of carbon nanotubes第28页
            1.3.3. Modification of carbon nanotubes第28-29页
    1.4. Thesis overview and objectives第29-32页
Chapter 2: Experimental procedures and characterisation techniques第32-40页
    2.1. Preparation of photocatalysts第32-34页
        2.1.1. Preparation of SrTiO_3 photocatalyst第32页
        2.1.2. Preparation of CuO-SrTiO_3 photocatalyst第32-33页
        2.1.3. Preparation of Cu-SrTiO_3 photocatalyst第33页
        2.1.4. Preparation of Pt-SrTiO_3 photocatalyst第33页
        2.1.5. Preparation of MWNTs loaded with CuO(CuO-MWNTs)第33-34页
        2.1.6. Preparation of Si-doped TiO_2 photocatalyst第34页
    2.2. Preparation of working electrodes第34-36页
        2.2.1. Preparation of glassy carbon electrodes coated with CuO-MWNTs第34-35页
        2.2.2. Preparation of ITO coated with CuO-MWNTs electrodes第35页
        2.2.3. Preparation of ITO coated with Si-TiO_2 electrodes第35-36页
    2.3. Characterization techniques第36页
    2.4. Photoelectrochemical measurements第36-37页
        2.4.1. Electrochemical measurements of CuO-MWNTs electrodes第36-37页
        2.4.2. Photoelectrochemical measurements of Si-TiO_2/ITO electrodes第37页
    2.5. Photocatalytic water splitting experiments第37-38页
        2.5.1. Photocatalytic water splitting experiments of CuO-SrTiO_3 photocatalyst第37-38页
        2.5.2. Photocatalytic water splitting experiments of Cu-SrTiO_3 photocatalyst第38页
        2.5.3. Photocatalytic water splitting experiment of photocatalytic system containing Eosin Y,MWNTs and CuO第38页
    2.6. Quantem yield of hydrogen evolution第38-39页
    2.7. Photodegradation experiments第39-40页
Chapter 3: Effect of CuO loading on the photocatalytic effciency of SrTiO_3 for hydrogenevolution第40-57页
    3.1. Introduction第40-41页
    3.2. Results and discussion第41-55页
        3.2.1. Characterization of photocatalyst第41-44页
        3.2.2. Effect of loading amount of CuO on hydrogen evolution activity over SrTiO_3第44-46页
        3.2.3. Effects of type and concentration of electron donors on hydrogen evolution overCuO-SrTiO_3第46-47页
        3.2.4. Effect of reaction temperature on hydrogen evolution over CuO-SrTiO_3第47-48页
        3.2.5. Effect of amount of photocatalyst on hydrogen evolution第48-49页
        3.2.6. Photocatalytic hydrogen evolution activity of 1.5% CuO-SrTiO_3第49-54页
        3.2.7. Stability of the photocatalyst第54页
        3.2.8. Quantum yield of hydrogen evolution第54-55页
    3.3. Conclusions第55-57页
Chapter 4: Effect of metallic Cu-loading on the photocatalytic effciency of SrTiO_3 forhydrogen evolution第57-70页
    4.1. Introduction第57-58页
    4.2. Results and discussion第58-69页
        4.2.1. Structure and component confirmation of the Cu-SrTiO_3 photocatalyst第58-60页
        4.2.2. Photocatalytic activity of hydrogen evolution over 0.5% Cu-SrTiO_3第60-65页
        4.2.3. Effect of loading amount of Cu on the photocatalytic activity of SrTiO_3第65-66页
        4.2.4. Effect of concentration of methanol on the photocatalytic activity of 0.5% Cu-SrTiO_3第66-67页
        4.2.5. Effect of reaction temperature on the photocatalytic activity of 0.5% Cu-SrTiO_3第67-68页
        4.2.6. Effect of the dosage of 0.5% Cu-SrTiO_3 on its photocatalytic activity第68-69页
    4.3. Conclusions第69-70页
Chapter 5: Effect of CuO on the catalytic activity of the photocatalytic systemcontaining Eosin Y, multiwalled carbon nanotubes and CuO for photocatalytichydrogen evolution第70-82页
    5.1. Introduction第70-71页
    5.2. Results and discussion第71-81页
        5.2.1. Structure characterization第71-73页
        5.2.2. Photocatalytic activity of the photocatalytic system containing Eosin Y andCuO-MWNTs for hydrogen evolution under visible light irradiation第73-75页
        5.2.3. Electrochemical behavior第75-81页
            5.2.3.1. Cyclic voltammetry第76-78页
            5.2.3.2. Electrochemical impedance spectroscopy第78-81页
    5.3. Conclusions第81-82页
Additional chapter (Chapter 6): Effect of Si doping on the photoelectrochemicalproperty and photocatalytic activity of TiO_2 nanoparticles第82-92页
    6.1. Introduction第82-83页
    6.2. Results and discussion第83-91页
        6.2.1. Photocatalyst characterization results第83-87页
        6.2.2. Photoelectrochemical characteristics第87-89页
        6.2.3. Photocatalytic degradation activity of MO over 15% Si-TiO_2 and P25第89-91页
    6.3. Conclusions第91-92页
Chapter 7: General conclusions第92-95页
References第95-120页
致谢第120-121页
攻读博士学位期间发表论文情况第121-122页
卷内备考表第122页

论文共122页,点击 下载论文
上一篇:Submarine High-resolution Acoustic Detection and the Application
下一篇:Dynamics of Impervious Surface Pattern in Cixi County and Its Simulation