摘要 | 第4-5页 |
ABSTRACT | 第5-6页 |
1 绪论 | 第9-15页 |
1.1 研究背景 | 第9-10页 |
1.2 研究的意义 | 第10-11页 |
1.3 国内外研究综述 | 第11-15页 |
1.3.1 国外研究综述 | 第11-12页 |
1.3.2 国内研究综述 | 第12-15页 |
2 数学史概述 | 第15-20页 |
2.1 什么是数学史 | 第15-19页 |
2.1.1 数学史概念界定 | 第15页 |
2.1.2 数学史所包含的内容 | 第15-16页 |
2.1.3 数学发展简史 | 第16-19页 |
2.2 研究数学史的价值 | 第19-20页 |
3 数学史融入高中数学教学 | 第20-36页 |
3.1 教学大纲要求 | 第20页 |
3.2 高中数学教学现状 | 第20-26页 |
3.2.1 教材分析 | 第20-24页 |
3.2.2 存在问题 | 第24-25页 |
3.2.3 提出建议 | 第25-26页 |
3.3 数学史融入高中数学教学的必要性分析 | 第26-27页 |
3.3.1 数学史的教育功能 | 第26页 |
3.3.2 新课改下的素质教育要求 | 第26-27页 |
3.4 数学史融入高中数学教学的原则与方法 | 第27-36页 |
3.4.1 融入原则 | 第27-33页 |
3.4.2 融入方法 | 第33-36页 |
4 数学史融入高中数学教学的实践 | 第36-52页 |
4.1 数学概念教学案例——对数概念 | 第36-43页 |
4.1.1 选题用意 | 第36-37页 |
4.1.2 教学设计 | 第37-41页 |
4.1.3 教学说明 | 第41-43页 |
4.2 数学命题教学案例——球的体积和表面积 | 第43-48页 |
4.2.1 选题用意 | 第43页 |
4.2.2 教学设计 | 第43-47页 |
4.2.3 教学说明 | 第47-48页 |
4.3“数学史选讲”教学案例——几何原本与公理化体系 | 第48-52页 |
4.3.1 选题用意 | 第48-49页 |
4.3.2 教学设计 | 第49-50页 |
4.3.3 教学说明 | 第50-52页 |
5 总结与展望 | 第52-54页 |
5.1 研究的主要结论 | 第52-53页 |
5.2 研究的不足与展望 | 第53-54页 |
参考文献 | 第54-56页 |
附录 1 | 第56-57页 |
附录 2 | 第57-58页 |
附录 3 | 第58-60页 |
附录 4 | 第60-62页 |
致谢 | 第62页 |