首页--数理科学和化学论文--计算数学论文--数值分析论文--线性代数的计算方法论文

求解Hamilton矩阵特征问题的一个QR型算法及关于辛Lanczos算法的误差分析

第一章 绪论第1-18页
 §1.1 控制理论背景第10-11页
 §1.2 最优控制第11-12页
 §1.3 解代数RICCATI方程的常见方法第12-16页
 §1.4 本文的主要工作第16-18页
第二章 辛矩阵和HAMILTON矩阵第18-29页
 §2.1 基本概念和性质第18-19页
 §2.2 标准型第19-20页
 §2.3 代数RICCATI方程和HAMILTONIAN-SCHUR标准型第20-21页
 §2.4 SR分解与QR型算法(SR算法)第21-29页
第三章 一个稳定的保结构计算HAMILTON矩阵特征值的算法第29-49页
 §3.1 引言第29-30页
 §3.2 基本算法模块及计算流程第30-33页
 §3.3 失稳问题第33-34页
 §3.4 增值与回溯过程第34-36页
 §3.5 状态与特征第36-37页
 §3.6 一次回溯成功的充要条件第37-38页
 §3.7 减比方程的建立与求解第38-40页
 §3.8 带消失稳与回溯措施的JTRIDIAG算法第40-42页
 §3.9 预处理问题第42页
 §3.10 数值实验第42-48页
 §3.11 结论第48-49页
第四章 关于特殊辛HOUSEHOLDER变换和特殊辛GIVENS变换的研究和算法第49-61页
 §4.1 引言第49页
 §4.2 定义第49-50页
 §4.3 性质和定理第50-58页
 §4.4 选取策略及算法第58-61页
第五章 一类随机辛阵的性质及其条件数为常数的几种证法第61-68页
 §5.1 引言第61页
 §5.2 预备结果第61-62页
 §5.3 主要结果第62-68页
第六章 求解HAMILTON矩阵特征问题的辛LANCZOS算法的误差分析第68-95页
 §6.1 引言第68-69页
 §6.2 求解HAMILTON矩阵特征问题的辛LANCZOS算法及其性质第69-75页
 §6.3 有限精度算法下的辛LANCZOS算法第75-86页
 §6.4 收敛与J-正交性的失去第86-95页
参考文献第95-102页
创新点摘要第102-103页
博士期间论文发表情况第103-104页
致谢第104页

论文共104页,点击 下载论文
上一篇:西学东渐与中国高等教育中近代学科的设立
下一篇:论高校德育内容的系统构建