摘要 | 第1-6页 |
Abstract | 第6-11页 |
第1章 绪论 | 第11-22页 |
·系统结构性质研究背景 | 第11-16页 |
·线性系统结构能控性与能观测性 | 第13-14页 |
·线性系统结构能控性研究思路 | 第14-16页 |
·非线性系统能控性与能观测性研究现状 | 第16-19页 |
·非线性系统能控性研究 | 第16-18页 |
·非线性系统能观测性研究 | 第18-19页 |
·基于参量空间的非线性系统结构性质研究方法与意义 | 第19-20页 |
·非线性系统结构能控性研究的历史方法 | 第19-20页 |
·基于参量空间的非线性系统结构性质研究 | 第20页 |
·本文的研究思路及内容 | 第20-22页 |
第2章 数学准备 | 第22-37页 |
·群和域 | 第22-23页 |
·微分流形、切空间、向量场 | 第23-25页 |
·微分流形 | 第23-24页 |
·切空间 | 第24-25页 |
·向量场 | 第25页 |
·LIE代数 | 第25-28页 |
·Lie导数与Lie括号 | 第25-28页 |
·Lie代数 | 第28页 |
·非交换环上多项式理论 | 第28-34页 |
·亚纯函数与微分型 | 第28-30页 |
·Pseudo导数与skew多项式 | 第30-31页 |
·skew多项式的商域 | 第31-34页 |
·解的存在性和唯一性及其连续性与参数的关系 | 第34-36页 |
·本章小结 | 第36-37页 |
第3章 非线性系统结构能控性 | 第37-71页 |
·非线性系统结构能控性的几何条件 | 第37-48页 |
·一些符号和定义 | 第37-39页 |
·结构能控的几何条件 | 第39-46页 |
·非线性系统与线性化系统的关系 | 第46-48页 |
·非线性系统结构能控性的代数条件 | 第48-54页 |
·线性系统频域结构能控性 | 第48-49页 |
·结构能控性的多项式方法 | 第49-52页 |
·串联与并联组合非线性系统的结构能控性条件 | 第52-54页 |
·能控性条件的应用 | 第54-70页 |
·一般系统的结构能控性分析 | 第54-61页 |
·物理系统的结构能控性分析 | 第61-70页 |
·本章小结 | 第70-71页 |
第4章 非线性系统的结构能观测性 | 第71-80页 |
·非线性系统结构能观测的几何条件 | 第71-74页 |
·结构能观性秩条件与可辨识性 | 第71-73页 |
·非线性系统的结构能观测性条件 | 第73-74页 |
·非线性系统结构能观测的代数条件 | 第74-77页 |
·结构能观测性空间 | 第74-75页 |
·结构能观测的代数判据 | 第75-77页 |
·能观测性条件的应用 | 第77-79页 |
·本章小结 | 第79-80页 |
第5章 非线性系统的结构可约性与结构能控性的关系 | 第80-90页 |
·非线性系统的可约性 | 第80-83页 |
·结构可约与结构能控的关系 | 第83-84页 |
·应用分析 | 第84-89页 |
·本章小结 | 第89-90页 |
第6章 RLCM有源网络状态方程系数矩阵的结构性质 | 第90-119页 |
·预备知识 | 第90-93页 |
·根据U_1对y和U_2分块 | 第93-97页 |
·B_(11)≠0的条件 | 第97-101页 |
·A的可约性和C≠0的条件 | 第101-109页 |
·应用于F(z)上的能控能观性 | 第109-117页 |
·设计一个结构能控能观的常态的有源网络的方法 | 第117-118页 |
·本章小结 | 第118-119页 |
第7章 总结与展望 | 第119-123页 |
·研究成果 | 第120-122页 |
·展望 | 第122-123页 |
参考文献 | 第123-130页 |
致谢 | 第130-131页 |
攻读博士学位期间发表的论文及参加的科研项目 | 第131-133页 |
附录A | 第133-138页 |
附录B | 第138-139页 |
附录C | 第139-140页 |