首页--农业科学论文--农业工程论文--农业动力、农村能源论文--热能和机械能的应用论文--农用内燃机论文

Diesel Engine Fault Diagnosis Using Wavelet Transforms Method Based on LabVIEW Software

LIST OF CONTENT第5-8页
LIST OF FIGURES第8-10页
LIST OF TABLES第10-11页
ABSTRACT第11页
CHAPTER Ⅰ:INTRODUCTION第12-16页
    1.1 objectives and problems statement第14-16页
        1.1.1 Problems statement第14-15页
        1.1.2 Objectives of the study第15-16页
CHAPTER Ⅱ:LITERATURE REVIEW第16-30页
    2.1 Diesel engine defect detection and monitoring methods第16-20页
        2.1.1 Vibration signal method第16-20页
    2.2 The vibration excitation sources of the diesel engine第20-26页
        2.2.1 Vibration response第21-23页
        2.2.2 Main sources of diesel engine noise第23-26页
    2.3 Time domain analysis第26-30页
        2.3.1 Feature extraction and selection from vibration signal第27页
        2.3.2 Time or statistical analysis第27页
        2.3.3 Standard deviation (SD)第27页
        2.3.4 Root mean square (RMS)第27-28页
        2.3.5 Peak level第28页
        2.3.6 Crest factor第28-29页
        2.3.7 Shape factor (SF)第29页
        2.3.8 Kurtosis第29页
        2.3.9 Skewness第29-30页
CHAPTER Ⅲ:MATERIALS AND METHODS第30-79页
    3.1 Materials and hardware design of fault diagnosis system第30-38页
        3.1.1 Location of experiment第30页
        3.1.2 The test diesel engine of experimental study第30-32页
        3.1.3 The CW40 electric dynamometer第32-33页
        3.1.4 Charge amplifier YE5853A第33页
        3.1.5 NI-Data acquisition card PCI 6040 E第33-35页
        3.1.6 Shielded connection box (SCB-68)第35-36页
        3.1.7 Piezoelectric acceleration sensor-type CA-YD-106第36页
        3.1.8 Personal computer第36页
        3.1.9 Lab VIEW software and engine accelerated vibration signal acquisition system第36-38页
        3.1.10 The virtual instrument construction and operation第38页
    3.2 Selection method for signal processing第38-48页
        3.2.1 Introduction第38-40页
        3.2.2 Wavelet transform method第40-42页
        3.2.3 Continuous wavelet transforms第42-44页
        3.2.4 Multi-resolution analysis第44-48页
    3.3 Signal denoising第48-52页
        3.3.1 The threshold denoising method第48-49页
        3.3.2 Types of thresholding第49-52页
    3.4 Experimental settings and parameters selection第52-61页
        3.4.1 Setup of the experiment第52-54页
        3.4.2 Sensors installation on the diesel engine head第54页
        3.4.3 The selected sampling frequency and sampling points第54-55页
        3.4.4 Selection method for signal denoising第55-56页
        3.4.5 Selection of the optimum threshold level and mother wavelet 第56-61页
        3.4.6 Selection of mother wavelet and wavelet decomposition level for signal 第61页
    3.5 Results and discussion第61-79页
        3.5.1 Wavelet analysis on cylinder head vibration signal第61-75页
        3.5.2 Characteristics of the signal energy and fault detection第75-76页
        3.5.3 Results of the analysis of time domain features extracted第76-79页
CHAPTER Ⅳ:BACK PROPAGATION NEURAL NETWORK AND SUPPORT VECTOR MACHINE第79-94页
    4.1 Back propagation neural network and support vector machine第79-83页
        4.1.1 Back propagation neural network (BPNN)第79-80页
        4.1.2 Architecture of backward propagation neural network第80-83页
    4.2 Support vector machine and signal pattern recognition第83-88页
        4.2.1 Construction of SVM algorithm第84-88页
    4.3 Results and discussions第88-94页
        4.3.1 Design of the back-propagation (BP) network第88-89页
        4.3.2 Design of the support vector machine training第89-90页
        4.3.3 Features extracted using SVM and BPNN第90-94页
CHAPTER Ⅴ:CONCLUSIONS AND RECOMMENDATIONS第94-96页
    5.1 Conclusions第94-95页
    5.2 Recommendations and future studies第95-96页
ACKNOWLEDGMENTS第96-97页
BIBLIOGRAPHY第97-106页
APPENDIX A:Ⅵ, FRONT PANEL AND BLOCK DIAGRAM第106-107页

论文共107页,点击 下载论文
上一篇:原发性胃淋巴瘤内镜活检组织抗原受体基因重排和流式细胞免疫表型检测的研究
下一篇:基于微波调控技术的量子非局域关联研究