移动轨迹预测算法研究
摘要 | 第5-6页 |
ABSTRACT | 第6-7页 |
第一章 绪论 | 第10-14页 |
1.1 课题背景与研究意义 | 第10-11页 |
1.2 国内外位置预测研究情况 | 第11-12页 |
1.3 主要工作内容 | 第12-13页 |
1.4 论文的结构 | 第13-14页 |
第二章 相关研究工作 | 第14-24页 |
2.1 停留点相关工作介绍 | 第14-16页 |
2.1.1 基于聚类的停留点提取算法 | 第14-15页 |
2.1.2 基于启发式阈值的停留点提取方法 | 第15-16页 |
2.2 轨迹预测相关工作介绍 | 第16-20页 |
2.2.1 基于关联规则挖掘的轨迹预测 | 第17页 |
2.2.2 马尔可夫模型 | 第17-18页 |
2.2.3 神经网络模型 | 第18-20页 |
2.3 工具介绍 | 第20-22页 |
2.3.1 Tensorflow | 第20-21页 |
2.3.2 Gensim | 第21页 |
2.3.3 其他相关工具的介绍 | 第21-22页 |
2.4 评价指标 | 第22-23页 |
2.4.1 停留点提取算法的评价指标 | 第22页 |
2.4.2 预测算法的评价指标 | 第22-23页 |
2.5 本章小结 | 第23-24页 |
第三章 停留点提取算法 | 第24-44页 |
3.1 轨迹预处理 | 第24-26页 |
3.2 地理网格划分与轨迹点归并 | 第26-29页 |
3.3 特征设计与提取 | 第29-30页 |
3.4 逻辑回归模型训练 | 第30-32页 |
3.5 停留点判断 | 第32-33页 |
3.6 实验结果及分析 | 第33-43页 |
3.6.1 实验环境 | 第33-34页 |
3.6.2 实验数据 | 第34页 |
3.6.3 实验流程 | 第34-35页 |
3.6.4 轨迹预处理 | 第35-36页 |
3.6.5 网格划分与轨迹归并 | 第36-38页 |
3.6.6 停留点初次提取与构造训练样本 | 第38-40页 |
3.6.7 逻辑回归模型训练 | 第40-43页 |
3.7 本章小结 | 第43-44页 |
第四章 位置与行为预测算法 | 第44-54页 |
4.1 预测流程 | 第44页 |
4.2 停留点地理网格到向量的转化 | 第44-46页 |
4.3 LSTM模型介绍 | 第46-49页 |
4.4 轨迹预测 | 第49-50页 |
4.5 实验结果及分析 | 第50-53页 |
4.5.1 位置预测 | 第51-52页 |
4.5.2 行为预测 | 第52-53页 |
4.6 本章小结 | 第53-54页 |
第五章 总结与展望 | 第54-56页 |
5.1 总结 | 第54页 |
5.2 展望 | 第54-56页 |
参考文献 | 第56-60页 |
致谢 | 第60-62页 |
攻读学位期间发表的学术论文目录 | 第62页 |