首页--工业技术论文--无线电电子学、电信技术论文--无线通信论文--移动通信论文

大规模MIMO系统的信道估计研究

摘要第4-5页
ABSTRACT第5页
Ⅰ INTRODUCTON第8-15页
    1.1 BACKGROUND第8-9页
    1.2 SIGNIFICANCE OF THE RESEARCH第9-10页
    1.3 RESEARCH ABROAD AND ITS CURRENT LEVEL第10-12页
    1.4 MAIN OBJECTIVES OF THE RESEARCH第12-13页
    1.5 RESEARCH CONTENT第13页
    1.6 RESEARCH METHOD第13-14页
    1.7 RESEARCH INNOVATIONS第14-15页
Ⅱ CHANNEL ESTIMATION IN MASIVE MIMO第15-28页
    2.1 CONCEPT OF CHANNEL ESTIMATION第15-17页
        2.1.1 Communication Channel Demands onMultimedia Services第15-16页
        2.1.2 Mobile Wireless Channel and Massive MIMO第16-17页
    2.2 MIMO CONCEPT AND ITS DIFFERENT CATEGORIES第17-21页
        2.2.1 MIMO Concept in Channel Estimation第17-19页
        2.2.2 MIMO in Different Categories第19-21页
    2.3 CONCEPT OF MASSIVE MIMO IN CHANNEL ESTIMATION第21-27页
        2.3.1 Introduction to Massive MIMO第21-24页
        2.3.2 MIMO transmission in Flexible and Improved connection第24-26页
        2.3.3 Importance of Channel Estimation第26-27页
    2.4 CONCLUSION第27-28页
Ⅲ MASSIVE MIMO IN 5G GENERATION第28-43页
    3.1 EVOLUTION OF WIRELESS TECHNOLOGIES第28-32页
        3.1.1 First Generation (1G)第28页
        3.1.2 Second Generation (2G)第28-30页
        3.1.3 Third Generation (3G)第30-32页
        3.1.4 The Fourth Generation (4G)第32页
    3.2 DEFINITION OF 5G第32-40页
        3.2.1 The 5G and its Wide Range第33-36页
        3.2.2 Comparative Analysis between 5G and 4G/LTE第36-37页
        3.2.3 Some Physical Advantages with 5G第37-38页
        3.2.4 The 5G and its Architecture第38-40页
    3.3 LIMITATIONs IN 5G MASSIVE MIMO第40-41页
    3.4 CONCLUSION第41-43页
Ⅳ PROPOSED APPROACH BASED VB-BAYESIAN ALGORITHM AND MIMO MC-CDMA第43-52页
    4.1 ORIGIN OF PROBLEMATIC第43-45页
    4.2 ADOPTION OF BAYESIAN TECHNIQUE APPROACH第45-46页
        4.2.1 The Role of Bayesian Method in the proposed Approach第45-46页
        4.2.2 Main Contribution proposed第46页
    4.3 MIMO TRANSMISSION IN FLEXIBLE AND IMPROVED CONNECTION第46-48页
        4.3.1 MIMO transmission in Flexible and Improved connection第46-47页
        4.3.2 System Model and ML-VB Interpretation第47-48页
    4.4 REDUCTION OF MIMO PAPR EFFECT WITH SFBC SYSTEM MODEL第48-51页
        4.4.1 PAPR System Model第48页
        4.4.2 PAPR Proprieties第48-49页
        4.4.3 PAPR Reduction via UR第49-51页
    4.5 CONCLUSION第51-52页
Ⅴ SIMULATION RESULTS第52-58页
    5.1 MIMO REPRESENTATION BETWEEN EM AND VB PERFORMANCE第52-55页
    5.2 EVALUATION OF MIMO FOR PEAK TO AVERAGE POWER RATIO (PAPR)第55-58页
Ⅵ GENERAL CONCLUSIONS AND FUTURE WORKS第58-59页
    6.1 GENERAL CONCLUSION第58页
    6.2 FUTURE WORKS第58-59页
REFERENCES第59-63页
致谢第63页

论文共63页,点击 下载论文
上一篇:TD-LTE复杂场景下小区间干扰协调技术的优化研究
下一篇:基于用户行为预测的无线通信网络资源分配优化研究