首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

云环境下大数据图的概括化理论与应用研究

摘要第5-7页
ABSTRACT第7-9页
Chapter 1. Introduction第14-37页
    1.1 Introduction to Big Data Graphs over cloud第14-22页
        1.1.1 Big Data第14-16页
        1.1.2 Characteristics of Big Data第16-19页
        1.1.3 Cloud Computing第19-22页
    1.2 Big Data Graphs第22-27页
        1.2.1 Graph Compression第23-24页
        1.2.2 Graph Sampling第24-26页
        1.2.3 Graph Clustering第26-27页
    1.3 Big Data Graphs Challenges and Applications第27-31页
        1.3.1 Big Data Graph Challenges第27-29页
        1.3.2 Big Data Graph Applications第29-31页
    1.4 Research Methodology第31-37页
        1.4.1 Research Motivation第31-33页
        1.4.2 Research Model第33-34页
        1.4.3 Contribution第34-35页
        1.4.4 Thesis Organization第35-37页
Chapter 2: Big Data Graph Minimization Theory and vGraph第37-57页
    2.1 Introduction第37-39页
    2.2 Literature Review of Graph Minimization Techniques第39-44页
        2.2.1 Graph Sampling第40页
        2.2.2 Graph Summarization with Bounded Error第40-41页
        2.2.3 Graph Structure Summarization第41-42页
        2.2.4 Efficient Aggregation for Graph Summarization第42页
        2.2.5 Discovery-Driven Graph Summarization第42-43页
        2.2.6 Distributed Graph Summarization第43页
        2.2.7 Summarizing and Understanding Large Graphs第43-44页
        2.2.8 TimeCrunch:Interpretable Dynamic Graph Summarization第44页
        2.2.9 Approximate Homogeneous Graph Summarization第44页
    2.3 GRAPH SUMMARIZATION第44-51页
        2.3.1. Preliminaries第44-45页
        2.3.2. Node Similarity Measure第45-48页
        2.3.3. Construction of Virtual Nodes第48-49页
        2.3.4. Construction of Virtual Edges第49-50页
        2.3.5. Proposed Algorithms第50-51页
        2.3.6. Complexity Analysis第51页
    2.4. Experimental Evaluation第51-56页
        2.4.1 Synthetic Datasets第52页
        2.4.2. Real Dataset第52-53页
        2.4.3. Performance Metrics第53-55页
        2.4.4 Missing Information Handling第55-56页
    2.5 Summary第56-57页
CHAPTER 3: A Graph based OSaaS model in the Cloud第57-78页
    3.1 Introduction第57-59页
    3.2 Graph based E-Commerce Big Data in the cloud第59-60页
        3.2.1 Graph Analytics in Recommender Systems of E-Commerce第60页
        3.2.2 Graph Summarization for E-Commerce Big Data第60页
    3.3 Challenges for E-Commerce data in the Cloud第60-63页
        3.3.1 ICT Access第61-62页
        3.3.2 Low Literacy第62-63页
    3.4 Communication Language第63-64页
        3.4.1 Non-availability of Credit/Debit Cards第64页
        3.4.2 Unawareness第64页
    3.5 OSaaS Structure第64-71页
        3.5.1 Architecture第65-67页
        3.5.2 Methods第67-69页
        3.5.3 OSaaS Transaction Framework第69-71页
    3.6 Experimental Analysis第71-77页
        3.6.1 Research Method第71-75页
        3.6.2 Evaluation第75页
        3.6.3 Related Work第75-77页
    3.7 Summary第77-78页
Chapter 4: E-Commerce Big Data Graphs Barriers: A Case Study第78-99页
    4.1 Introduction第78-79页
    4.2 Literature Review第79-82页
    4.3 Challenges of E-Commerce data in Developing Countries第82页
    4.4 E-Commerce in Pakistan第82-83页
    4.5 Limitations of E-Commerce第83-89页
        4.5.1 Internet and E-Commerce Experience第83页
        4.5.2 Trust and Security第83-85页
        4.5.3 Technology Acceptance第85页
        4.5.4 Internet Access第85-86页
        4.5.5 Language第86-87页
        4.5.6 Shipping System第87-89页
    4.6 Research Methodology第89-93页
        4.6.1 Research Problem第89页
        4.6.2 Research Model第89-90页
        4.6.3 Dataset第90页
        4.6.4 Sample Description第90-91页
        4.6.5 Demographic Variables第91-93页
    4.7 Results and Discussions第93-98页
        4.7.1 Gender Impact第94-95页
        4.7.2 Age Impact第95页
        4.7.3 Occupation Impact第95页
        4.7.4 Education Impact第95-97页
        4.7.5 Findings第97-98页
    4.8 Summary第98-99页
Chapter 5: Challenges and Applications of Big Data Graphs in Industry 4.0第99-116页
    5.1 Introduction第99-100页
    5.2 Industry 4.0 and Big Data Graphs第100-104页
        5.2.1 Interoperability Graphs第101页
        5.2.2 Virtualization Graphs第101-102页
        5.2.3 Decentralization Graphs第102页
        5.2.4 Real-time Capability第102页
        5.2.5 Service Orientation第102页
        5.2.6 Modularity第102-104页
    5.3 Challenges of Big Data Graphs in Industry 4.0第104-113页
        5.3.1 Acquisition of Automation Data第105-107页
        5.3.2 Data Transformation第107-108页
        5.3.3 Data Integration and Modeling第108-109页
        5.3.4 IoT Data Graph第109-111页
        5.3.5 Real-time access第111-112页
        5.3.6 Security and Privacy第112页
        5.3.7 Data Analytics第112页
        5.3.8 Data presentation第112-113页
    5.4 Application of Big Data graphs in Industry 4.0第113-115页
        5.4.1 Business Intelligence第113页
        5.4.2 Fault Tolerance第113-114页
        5.4.3 Product Quality Enhancement第114页
        5.4.4 Machine Health Prediction第114页
        5.4.5 Production Planning第114页
        5.4.6 Smart Cities第114-115页
    5.5 Related Works第115页
    5.6 Summary第115-116页
Chapter 6: Conclusion and Future Works第116-119页
    6.1 Conclusion第116-117页
    6.2 Future Works第117-119页
REFERENCES第119-129页
攻读博士位期间发表的学术论文第129-131页
Acknowledgements第131-133页

论文共133页,点击 下载论文
上一篇:基于视觉注意的驾驶场景显著性检测模型研究
下一篇:Learning Based Multi-Object Tracking