首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文

基于自适应神经模糊方法非线性MIMO控制研究

摘要第5-6页
Abstract第6-7页
Chapter 1 INTRODUCTION第13-27页
    1.1 Background to the study第13-17页
    1.2 Current status of the study第17-22页
        1.2.1 General situation第17-19页
        1.2.2 Genetic algorithm (GA) tuning of a neuron-fuzzy controller第19-20页
        1.2.3 Current research studies on the application of self-tuning controller第20-21页
        1.2.4 Current research studies on the application of PID controller第21-22页
    1.3 Objectives of the thesis第22页
    1.4 The object and scope of the study第22-23页
    1.5 The method of the study第23页
    1.6 The scientific and practical significance of the thesis第23-24页
    1.7 Structure of the thesis第24-27页
Chapter 2 OVERVIEW OF FUZZY SYSTEM第27-45页
    2.1 Introduction第27-30页
    2.2 Fuzzy logic-Fuzzy set第30-32页
    2.3 The forms of popular membership function第32-34页
    2.4 Fuzzy variable and language variable第34-35页
        2.4.1 Fuzzy variable第34-35页
        2.4.2 Language variable第35页
    2.5 Fuzzy inference and the constituent rule第35-39页
        2.5.1 Fuzzy inference第35页
        2.5.2 The constituent clause第35-37页
        2.5.3 Fuzzy constituent rule第37-38页
        2.5.4 Rule of many constituent clauses第38-39页
    2.6 Fuzzy system第39-44页
        2.6.1 Block diagram第39-40页
        2.6.2 Defuzzification method第40-44页
    2.7 Conclusion第44-45页
Chapter 3 OVERVIEW OF ARTIFICIAL NEURAL NETWORK第45-63页
    3.1 Introduction第45-46页
    3.2 Artificial neuron第46-49页
    3.3 The types of popular artificial neural networks第49-51页
        3.3.1 Single-layer feedforward artificial neural network第49-50页
        3.3.2 Multilayer feedforward artificial neural network第50页
        3.3.3 Single-layer recurrent artificial neural network第50-51页
        3.3.4 Multilayer recurrent artificial neural network第51页
    3.4 Learning methods of artificial neural network第51-54页
        3.4.1 Supervised learning第52页
        3.4.2 Reinforcement learning第52-53页
        3.4.3 Unsupervised learning第53-54页
    3.5 Fuzzy-Artificial neural network integrated systems第54-61页
        3.5.1 Fuzzy-Artificial neural network with fuzzy singleton rules第54-56页
        3.5.2 Adaptive neural-fuzzy inference system第56-61页
    3.6 Conclusion第61-63页
Chapter 4 MATHEMATICAL MODEL FOR CONTROL PLANT第63-75页
    4.1 Introduction第63页
    4.2 Some plant models of liquid tank system第63-66页
        4.2.1 The plant model of liquid single tank system第63-65页
        4.2.2 The plant model of liquid cascade tank system第65页
        4.2.3 The plant model of liquid couple tank system第65-66页
        4.2.4 The plant model of serial liquid couple tank system第66页
    4.3 Selecting the control plant model of liquid tank system第66-72页
        4.3.1 Selecting the model of liquid tank system第66-67页
        4.3.2 Building the mathematical model of the selected liquid couple tank system第67-71页
        4.3.3 The physical parameters of the plant model of the liquid couple tank system第71-72页
    4.4 Building the simulation model of liquid couple tank system on the Matlab-Simulink第72-73页
    4.5 Conclusion第73-75页
Chapter 5 DESIGN OF THE CONTROLLER BASED ON THE FUZZY-NEURAL SYSTEM第75-97页
    5.1 Designing the controller by using the ANFIS structure第75-83页
        5.1.1 Introduction第75页
        5.1.2 Designing the ANFIS controller for the liquid couple tank system第75-83页
    5.2 Designing the controller by using the neural network of the Model-Free Adaptive第83-96页
        5.2.1 Introduction第83页
        5.2.2 SISO control system of using MFA neural network第83-84页
        5.2.3 Structure of SISO MFA neural network controller第84-85页
        5.2.4 The control algorithm of the SISO MFA neural network controller第85-86页
        5.2.5 The learning algorithm of the SISO MFA neural network controller第86-87页
        5.2.6 MIMO control system of using MFA neural network第87页
        5.2.7 Two-inputs two-outputs control system of using MFA neural network第87-89页
        5.2.8 The control algorithm of the two-inputs two-outputs MFA neural network controller第89-92页
        5.2.9 Designing the MFA neural network controller for the liquid couple tank system第92-96页
    5.3 Conclusion第96-97页
Chapter 6 BUILD OF SIMULATION MODELS AND ANALYSIS OF RESULTS第97-133页
    6.1 Introduction第97页
    6.2 Building simulation model of the control system of the liquid level of the couple tank system using the ANFIS controller第97-106页
        6.2.1 Building simulation model of the designed ANFIS controller第97-106页
        6.2.2 Simulation model of the control system of the liquid level of the couple tank system using the ANFIS controller第106页
    6.3 Building simulation model of the control system of liquid level of couple tank system using the MFA neural network controller第106-113页
        6.3.1 Building simulation model of the designed MFA neural network controller第106-112页
        6.3.2 Simulation model of the control system of the liquid level of the couple tank system using the MFA neural network controller第112-113页
    6.4 Simulation and analysis of results第113-128页
        6.4.1 Simulation results of the control system of the couple tank system using the ANFIS controller第113-123页
        6.4.2 Simulation results of the control system of the couple tank system using the MFA neural network controller第123-128页
    6.5 Conclusion第128-133页
Chapter 7 CONCLUSION AND DEVELOPMENT第133-135页
    7.1 Conclusion第133-134页
    7.2 Development第134-135页
ACKNOWLEDGEMENTS第135-137页
REFERENCES第137-143页
APPENDIX第143-154页

论文共154页,点击 下载论文
上一篇:气体压力式光纤Bragg光栅温度传感器的研究
下一篇:基于贝叶斯网络的客户信用风险评估及系统设计