摘要 | 第1-5页 |
ABSTRACT | 第5-9页 |
注释表 | 第9-10页 |
第一章 绪论 | 第10-17页 |
·数据挖掘研究概述 | 第10-14页 |
·数据挖掘一般过程 | 第10-11页 |
·数据挖掘任务模型 | 第11-14页 |
·研究背景及意义 | 第14-15页 |
·论文结构 | 第15-17页 |
第二章 软件缺陷预测技术 | 第17-28页 |
·软件缺陷定义 | 第17-18页 |
·静态缺陷预测 | 第18-23页 |
·基于软件度量元预测 | 第18-20页 |
·缺陷模块分类预测 | 第20-21页 |
·缺陷预测模型 | 第21-23页 |
·动态软件缺陷预测 | 第23-27页 |
·本章小结 | 第27-28页 |
第三章 基于 PSO-BP 的早期软件缺陷预测模型 | 第28-42页 |
·神经网络 | 第28-31页 |
·神经网络简介 | 第28-29页 |
·BP 神经网络算法 | 第29-31页 |
·BP 神经网络优缺点 | 第31页 |
·粒子群优化算法 | 第31-32页 |
·J48 决策树算法 | 第32-34页 |
·基于 PSO-BP 的早期软件缺陷预测建模 | 第34-37页 |
·软件缺陷预测模型 | 第34页 |
·PSO 优化 BP 神经网络 | 第34-37页 |
·PSO 优化 BP 神经网络算法步骤 | 第34-36页 |
·参数设置问题讨论 | 第36-37页 |
·实验与分析 | 第37-41页 |
·实验环境与数据 | 第37-39页 |
·实验评价标准 | 第39页 |
·实验结果与分析 | 第39-41页 |
·本章小结 | 第41-42页 |
第四章 基于 ESGM 模型的动态缺陷预测模型 | 第42-59页 |
·经验模态分解 | 第42-44页 |
·灰色理论 | 第44-46页 |
·灰色 GM(1,1)模型定义 | 第44页 |
·灰色模型建立 | 第44-46页 |
·支持向量回归 | 第46-48页 |
·支持向量回归定义 | 第46页 |
·支持向量回归算法 | 第46-48页 |
·ESGM 建模 | 第48-49页 |
·实验与分析 | 第49-58页 |
·实验数据 | 第49-50页 |
·性能评价标准 | 第50-51页 |
·MPSO-SVR 模型 | 第51-54页 |
·SVR 模型一般结构 | 第51页 |
·SVR 模型预测 | 第51-52页 |
·参数对支持向量回归的影响 | 第52-53页 |
·MPSO-SVR 建模 | 第53-54页 |
·MPSO-SVR 模型应用 | 第54页 |
·ESGM 模型 | 第54-58页 |
·ESGM 模型应用 | 第54-57页 |
·模型比较 | 第57-58页 |
·本章小结 | 第58-59页 |
第五章 结束语 | 第59-61页 |
·本文总结 | 第59-60页 |
·研究展望 | 第60-61页 |
参考文献 | 第61-65页 |
致谢 | 第65-66页 |
在学期间的研究成果及发表的学术论文 | 第66页 |