首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

基于地理标签的社会媒体数据挖掘的智能旅游推荐研究

摘要第3-6页
Abstract第6-9页
List of Figures第13-15页
List of Tables第15-16页
1 Introduction第16-32页
    1.1 Geo-tagged social media第18页
    1.2 Recommendation systems第18-20页
    1.3 Research focus第20-27页
        1.3.1 Analysis of attractive areas第22-23页
        1.3.2 Recommendations of interesting tourist locations第23-24页
        1.3.3 Personalized travel recommendations第24-26页
        1.3.4 Recommendations of interesting travel sequences第26-27页
    1.4 Research framework第27-28页
    1.5 Contributions第28-30页
    1.6 Structure of the thesis第30-32页
2 Dataset第32-36页
    2.1 Data acquisition第32页
    2.2 Data pre-processing第32-36页
3 Analysis of attractive areas using geo-tag photos第36-53页
    3.1 Introduction第36-38页
    3.2 Related work第38-40页
    3.3 Problem definition第40-41页
    3.4 Mapping geo-tags to tourist locations (finding tourist locations)第41-44页
    3.5 Inferring the semantic of tourist locations第44-48页
    3.6 Profiling locations and building the database of tourist locations第48-52页
    3.7 Summary第52-53页
4 Recommendations of interesting tourist locations第53-70页
    4.1 Introduction第53-55页
    4.2 Related work第55-58页
        4.2.1 Recommendation Systems第55页
        4.2.2 Recommendations based on user-expertise model第55-56页
        4.2.3 Extraction and ranking of locations from GPS records and geo-tagged social media第56-57页
        4.2.4 Context-aware recommendations第57-58页
    4.3 Problem definition第58-59页
    4.4 System architecture第59-60页
    4.5 Modelling users-locations-location categories relationship第60-61页
    4.6 Mining interestingness (significance) of locations第61-62页
    4.7 Context-aware interesting(significant)tourist locations recommendations第62-64页
    4.8 Experimental evaluation and results第64-67页
        4.8.1 Tourist locations' recommendation第64-67页
            4.8.1.1 Ground truth and methodology for evaluation第64页
            4.8.1.2 Baseline methods第64-66页
            4.8.1.3 Metrics and results第66-67页
            4.8.1.4 Performance evaluation with individual contexts第67页
    4.9 Summary第67-70页
5 Personalized travel recommendations第70-89页
    5.1 Introduction第70-72页
    5.2 Related work第72-74页
    5.3 Preliminaries and problem definition第74-75页
    5.4 Context-aware personalized travel recommendation system第75-81页
        5.4.1 System architecture第75-77页
        5.4.2 Building user-location matrix第77-78页
        5.4.3 Building user-user similarity matrix第78页
        5.4.4 Recommendations第78-81页
    5.5 Experimental evaluation and results第81-86页
        5.5.1 Finding tourist locations第81页
        5.5.2 Context-aware personalized travel recommendations第81-86页
            5.5.2.1 Ground truth and methodology for evaluation第81-82页
            5.5.2.2 Baseline methods第82-83页
            5.5.2.3 Metrics and results第83-86页
            5.5.2.4 Performance evaluation with individual contexts第86页
    5.6 A personalized context-aware significant tourist locations recommendation method第86-88页
        5.6.1 Evaluation of personalized context-aware significant tourist locations recommendation method第86-88页
    5.7 Summary第88-89页
6 Recommendations of interesting tourist sequences第89-106页
    6.1 Introduction第89-90页
    6.2 Related work第90-92页
        6.2.1 Mining interesting patterns第91页
        6.2.2 Mining movement patterns from web information and mobility data第91-92页
        6.2.3 Mining users' travel patterns from user contributed geo-tagged social media第92页
    6.3 Problem definition第92-95页
    6.4 Methodology第95-96页
    6.5 Identification of users' trips第96页
    6.6 Mining frequent sequential travel patterns(travel sequences)第96-98页
    6.7 Recommendations第98-100页
        6.7.1 Frequent travel sequence patterns(FR)第99页
        6.7.2 Context-aware significant travel sequence patterns(CSTR):第99-100页
    6.8 Experiments and results第100-105页
        6.8.1 User trips and travel sequence patterns generation第100-101页
        6.8.2 Ranking travel sequence patterns第101-105页
            6.8.2.1 Appropriateness第101-103页
            6.8.2.2 Ranking relevance第103-105页
    6.9 Summary第105-106页
7 Conclusions and future work第106-110页
Bibliography第110-123页
Publications from this thesis第123-124页
Acknowledgements第124页

论文共124页,点击 下载论文
上一篇:硫/多孔碳复合正极材料的研究
下一篇:高速复杂网络环境下异常流量检测技术研究