首页--医药、卫生论文--药学论文--药剂学论文--制剂学论文

探索刺激pH响应性含糖嵌段共聚物的结构对阿霉素负载与可控释放的影响

摘要第8-10页
Abstract第10-11页
Chapter 1: Introduction第20-24页
    1.1 Introduction第20-22页
    1.2 Research Objectives第22页
    1.3 Research problems第22页
    1.4 Thesis Outline第22-24页
Chapter 2: Literature Review第24-52页
    2.1 Introduction第24-26页
    2.2 Copolymers第26-27页
    2.3 Glycopolymers第27-28页
    2.4 Atom Transfer Radical Polymerization第28-34页
        2.4.1 Components of Atom Transfer Radical Polymerization第30-33页
            2.4.1.1 Monomers第30-31页
            2.4.1.2 Initiators第31-32页
            2.4.1.3 Catalyst第32页
            2.4.1.4 Ligand第32页
            2.4.1.5 Solvents第32页
            2.4.1.6 Reaction Temperature and Reaction Time第32-33页
        2.4.2 Mechanism of Atom Transfer Radical Polymerization第33-34页
    2.5 Preparation of Triblock Copolymer and Glycopolymer第34-35页
    2.6 Self-Assembly of Block Copolymers Micelles第35-38页
    2.7 Stimuli-Responsive Delivery and Glycopolymer Delivery第38-40页
        2.7.1 The pH Differences for Stimuli-Responsive Delivery第39页
        2.7.2 Temperature Differences for Stimuli-Responsive Delivery第39-40页
    2.8 The pH-Responsive Polymeric Nanocarriers第40-41页
    2.9 The pH-Responsive Polymer–Drug Conjugates第41-42页
    2.10 The pH-Responsive Micellar Delivery Systems第42页
    2.11 The pH-Responsive Dendrimers第42-43页
    2.12 Double Hydrophilic Block Copolymer Micelles第43-44页
    2.13 Drug Delivery Systems第44-51页
        2.13.1 Anticancer Drug (Doxorubicin)第45-46页
        2.13.2 Doxorubicin Loading Capacity and Encapsulation Efficiency第46-47页
        2.13.3 Preparation of DOX-Loaded Tumor Targeted Polymeric Micelles第47页
        2.13.4 Drug Loading第47-49页
            2.13.4.1 Magnetic Nanoparticles第48-49页
        2.13.5 Drug Release Behavior of Doxorubicin-Loaded Nanoparticles第49-51页
            2.13.5.1 Thermo-Responsive Hydrogels第49-50页
            2.13.5.2 Microspheres of biodegradable polymers第50-51页
    2.14 Conclusion第51-52页
Chapter 3: Investigation of pH-Responsive Block Glycopolymers with Random and BlockArchitectures for Loading and Release of Doxorubicin第52-76页
    3.1 Introduction第52-54页
    3.2 Experiments第54-59页
        3.2.1 Materials第54-55页
        3.2.2 Preparation of PEG-b-P(DEA-co-GAMA) glycopolymers with random architecture第55页
        3.2.3 Preparation of PEG-b-PDEA-b-PGAMA glycopolymers with block architecture第55-56页
        3.2.4 Preparation of micelles from pH-responsive block glycopolymers第56页
        3.2.5 Measurement of critical micelle concentration of polymers第56页
        3.2.6 Drug Loading Capacity and Encapsulation Efficiency第56-57页
        3.2.7 Preparation of doxorubicin-loading nanoparticles第57页
        3.2.8 The in-vitro release study第57-58页
        3.2.9 Characterization第58-59页
    3.3 Results and Discussion第59-74页
        3.3.1 Synthesis of pH-Responsive Block Glycopolymers第59-61页
        3.3.2 Nuclear Magnetic Resonance Spectra (~1H NMR)第61-63页
        3.3.3 Gel permeation chromatography (GPC)第63-64页
        3.3.4 Micellar Self-Assembly of pH-Responsive Block Glycopolymers第64-65页
        3.3.5 Critical Micelle Concentration of polymers (CMC)第65-66页
        3.3.6 Self-assembly第66-67页
        3.3.7 Zeta-potential第67页
        3.3.8 Dynamic light scattering (DLS)第67-68页
        3.3.9 Transmission Electron Microscopy (TEM)第68页
        3.3.10 Polymeric micelles for drug loading第68-70页
        3.3.11 The in-vitro polymeric micelles for doxorubicin-loaded and release第70-72页
        3.3.12 Release DOX from the PEG_(113)-b-P(DEA_(55)-co-GAMA_(12)), and PEG_(113)-b-PDEA_(55)-b-PGAMA_(15) micelles第72-74页
    3.4 Conclusion第74-76页
Chapter 4: Well-defined pH-responsive Block Glycopolymers different architectures forControlling Loading and Release Doxorubicin第76-101页
    4.1 Introduction第76-78页
    4.2 Experiments第78-83页
        4.2.1 Materials第78页
        4.2.2 Preparation of PEG-b-P(DEA-co-GAMA) glycopolymers with random architecture第78-79页
        4.2.3 Preparation of PEG-b-PDEA-b-PGAMA glycopolymers with block architecture第79页
        4.2.4 Preparation of PEG-b-PGAMA-b-PDEA glycopolymers with block architecture第79-80页
        4.2.5 Preparation of micelles from pH-responsive block glycopolymers第80页
        4.2.6 Measurement of critical micelle concentration of polymers第80页
        4.2.7 Drug Loading Capacity and Encapsulation Efficiency第80-81页
        4.2.8 Preparation of doxorubicin-loading nanoparticles第81页
        4.2.9 The in-vitro release study第81-82页
        4.2.10 Characterization第82-83页
    4.3 Results and Discussion第83-100页
        4.3.1 Synthesis of pH-Responsive Block Glycopolymers第83-84页
        4.3.2 Nuclear Magnetic Resonance Spectra (~1H NMR)第84-87页
        4.3.3 Gel permeation chromatography (GPC)第87-88页
        4.3.4 Micellar Self-Assembly of pH-Responsive Block Glycopolymers第88-89页
        4.3.5 Critical Micelle Concentration of polymers (CMC)第89-90页
        4.3.6 Self-assembly第90-91页
        4.3.7 Zeta-potential第91页
        4.3.8 Dynamic light scattering (DLS)第91-92页
        4.3.9 Transmission Electron Microscopy (TEM)第92页
        4.3.10 Polymeric micelles for drug loading第92-94页
        4.3.11 The in-vitro polymeric micelles for doxorubicin-loaded and release第94-97页
        4.3.12 Release DOX from the PEG_(113)-b-P(DEA_(40)-co-GAMA_(30)), PEG_(113)-b-PDEA_(41)-b-PGAMA_(34), and PEG_(113)-b-PGAMA_(32)-b-PDEA_(38) micelles第97-100页
    4.4 Conclusion第100-101页
Chapter 5: Conclusions and future trends第101-104页
Acknowledgements第104-105页
References第105-112页

论文共112页,点击 下载论文
上一篇:维生素D缺乏诱发小鼠肝脏慢性炎症与早期纤维化的特征及部分可能机制
下一篇:MSCTA评价右侧正常及肾癌状态下肾静脉及肿瘤肾外引流静脉的研究