基于word2vec和SVM的文本内容监测分析应用研究
| 摘要 | 第3-4页 | 
| abstract | 第4页 | 
| 第1章 绪论 | 第7-12页 | 
| 1.1 课题来源与背景 | 第7-8页 | 
| 1.1.1 课题来源 | 第7页 | 
| 1.1.2 课题背景 | 第7-8页 | 
| 1.2 研究现状与意义 | 第8-11页 | 
| 1.3 本文主要工作 | 第11页 | 
| 1.4 本文组织结构 | 第11-12页 | 
| 第2章 相关理论与技术 | 第12-20页 | 
| 2.1 文本内容监测技术 | 第12-14页 | 
| 2.1.1 关键词监测 | 第12页 | 
| 2.1.2 基于内容的文本分类 | 第12-14页 | 
| 2.2 支持向量机 | 第14-16页 | 
| 2.3 word2vec | 第16-17页 | 
| 2.4 分布式平台 | 第17-19页 | 
| 2.4.1 Hadoop | 第17-18页 | 
| 2.4.2 并行支持向量机 | 第18-19页 | 
| 2.5 本章小结 | 第19-20页 | 
| 第3章 基于word2vec和SVM的文本分类 | 第20-32页 | 
| 3.1 基于word2vec的短信特征提取 | 第20-23页 | 
| 3.2 MapReduce-SVM模型 | 第23-25页 | 
| 3.3 构建分类器 | 第25-29页 | 
| 3.4 实验分析 | 第29-31页 | 
| 3.5 本章小结 | 第31-32页 | 
| 第4章 应用系统设计 | 第32-52页 | 
| 4.1 系统分析 | 第32-33页 | 
| 4.2 系统组织架构 | 第33-34页 | 
| 4.3 系统功能 | 第34-41页 | 
| 4.3.1 核心功能 | 第34-37页 | 
| 4.3.2 整体功能 | 第37-41页 | 
| 4.4 业务逻辑分析与设计 | 第41-46页 | 
| 4.4.1 话单文件下载解析 | 第41-45页 | 
| 4.4.2 告警计划流程 | 第45-46页 | 
| 4.5 数据库设计 | 第46-51页 | 
| 4.5.1 逻辑设计 | 第46-47页 | 
| 4.5.2 表结构设计 | 第47-51页 | 
| 4.6 本章小结 | 第51-52页 | 
| 第5章 应用实现 | 第52-57页 | 
| 5.1 系统主要功能实现 | 第52-55页 | 
| 5.2 应用测试效果 | 第55-56页 | 
| 5.3 本章小结 | 第56-57页 | 
| 第6章 总结与展望 | 第57-58页 | 
| 6.1 总结 | 第57页 | 
| 6.2 展望 | 第57-58页 | 
| 致谢 | 第58-59页 | 
| 参考文献 | 第59-62页 | 
| 攻读学位期间的研究成果 | 第62页 |