首页--交通运输论文--公路运输论文--汽车工程论文--各种汽车论文--各种能源汽车论文

动力电池荷电状态估计算法研究

摘要第4-6页
Abstract第6-7页
List of Abbreviations第14-16页
Chapter 1 Introduction第16-19页
    1.1 Thesis Motivation第16页
    1.2 Thesis Scope and Objectives第16-17页
    1.3 Thesis Organization第17-19页
Chapter 2 Literature Review第19-36页
    2.1 Current and Future Energy Situation第19-21页
    2.2 Li-ion Battery Operating Principle第21-23页
        2.2.1 Battery Terminologies and Definitions第21-22页
        2.2.2 Operating Principle of Li ion battery第22-23页
    2.3 Recent Work in Battery Modeling第23-28页
        2.3.1 Ideal Model第24页
        2.3.2 Physical and Behavioral Model第24-25页
        2.3.3 Electric Circuit Model第25-27页
        2.3.4 Electro Chemical Model第27-28页
    2.4 Recent Work in Battery State Estimation第28-32页
        2.4.1 Discharge Test Method第28页
        2.4.2 Coulomb counting/Ampere hour integral method第28-29页
        2.4.3 Open Circuit Voltage (OCV) method第29-30页
        2.4.4 Electrolyte Physical Properties Measurement based Method第30页
        2.4.5 Electrolyte Physical Properties Measurement based Method第30页
        2.4.6 Neural Network Model Method第30-31页
        2.4.7 Fuzzy Logic Method第31页
        2.4.8 Model based integrated algorithm method第31-32页
    2.5 Thermal Management Systems第32页
    2.6 Battery Aging Mechanisms第32-33页
    2.7 Summary第33-36页
Chapter 3 Battery Modeling第36-42页
    3.1 Introduction第36-37页
    3.2 Battery Model and Data Collection第37页
        3.2.1 Equivalent Battery Model:第37页
    3.3 Battery Parameter Identification第37-39页
        3.3.1 Battery Discharging Experiments:第37-39页
    3.4 Least Square Method for Battery Parameter Identification第39-40页
    3.5 Summary第40-42页
Chapter 4 Model based Battery State Estimation第42-56页
    4.1 Introduction第42页
    4.2 Related Work第42-43页
    4.3 Proposed Algorithms for State Estimation第43-49页
        4.3.1 Extended Kalman Filter第43-44页
        4.3.2 Sigma Point Unscented Kalman Filter第44-47页
        4.3.3 Proposed Particle Filter as a Sequential Monte Carlo Method第47-49页
    4.4 Experimental Results and Discussion第49-55页
    4.5 Discussion and Conclusion第55-56页
Chapter 5 Subtractive Clustering based Neuro-Fuzzy State of Charge Estimation第56-82页
    5.1 Introduction第56页
    5.2 Related Work第56-59页
    5.3 Proposed Subtractive Clustering based Neuro fuzzy Algorithm第59-66页
        5.3.1 Overview of Adaptive Neural Fuzzy Interface System第59-62页
        5.3.2 Subtractive clustering第62-66页
    5.4 Experiments第66-80页
        5.4.1 Experimental Results and Discussion第66-67页
        5.4.2 Drive Cycles used for Training and Testing第67-69页
        5.4.3 Experimental Data Collection第69-70页
        5.4.4 Data Normalization第70页
        5.4.5 Effectiveness Measures第70-78页
        5.4.6 Sensitivity analysis第78-80页
    5.5 Discussion and Conclusion第80-82页
Chapter 6 Conclusion and Future Work第82-85页
    6.1 Conclusion第82-83页
    6.2 Future Work第83-85页
Bibliography第85-93页
Acknowledgement第93-95页
About the Author第95-97页

论文共97页,点击 下载论文
上一篇:制约传统藏医“杂琼”(rtsa sbyongs)疗法的三因素说及其可持续发展研究
下一篇:典型环境持久性有机污染物的母婴人群暴露与新生儿健康风险评价