首页--生物科学论文--微生物学论文

Spatial Regulation Motilities in the Social Bacterium Myxococcus Xanthus

INTRODUCTION第8-9页
GENERAL INTRODUCTION第9-14页
CHAPTER 1:CELL POLARITY IN EUKAYOTES AND PROKARYOTES第14-59页
    1. Mechanisms of cell polarization in eukaryotes第15-25页
        1.1 Small GTPases of the Ras superfamily第15-18页
        1.2 Cell polarization by small GTPases and their cognate GTPase activating proteins (GAP)第18-25页
            1.2.1 Embryonic polarization in Caenorhabditis elegans第18-20页
            1.2.2 Polarized positioning of budding site enabled by a Cdc42 GAP-mediatedinhibitory zone第20-22页
            1.2.3 Directional polarization by chemotactic Dyctyostelium第22-25页
    2. Cell polarity in bacteria第25-59页
        2.1 Cell polarity in microbes:necessa ry or not?第25-26页
        2.2 Mechanisms of specific protein localization during cell polarization第26-54页
            2.2.1 Cell Polarization by membrane rafts第26-29页
            2.2.2 Cell polarization by geometric recognition of curvature第29-32页
            2.2.3 Cell polarization by cell wall biosynthesis第32-35页
            2.2.4 Cell polarization by chromosomal polarity第35-39页
            2.2.5 Role of the bacterial cytoskeleton in cell polarity第39-49页
                2.2.5.1 FtsZ:the bacterial tubulin homologue第39-44页
                    2.2.5.1.1 Assembly of FtsZ at midcell第40-42页
                    2.2.5.1.2 Role of midcell positioning of FtsZ rings in cell polarization第42-43页
                    2.2.5.1.3 FtsZ dictates asymmetric cell division第43-44页
                2.2.5.2 The role of the actin-like cytoskeleton in cell polarization第44-47页
                2.2.5.3 Role of Intermediate filaments CreS in cell polarization第47-49页
            2.2.6 Polar organizing factors第49-52页
            2.2.7 Polar sensory systems第52-54页
        2.3 Dynamic polarity regulation第54-59页
            2.3.1 Two-component systems第54-57页
            2.3.2 Two-component systems and the control of cell polarity: the example ofCtrA control during the Caulobacter cell cycle第57-58页
            2.3.3 Dynamic polarity switching during Myxococcus xanthus motility第58-59页
CHAPTER 2:DYNAMIC CELL POLARITY IN MYXOCOCCUS XANTHUS第59-75页
    1. Motility mechanisms in Myxococcus xanthus第61-69页
        1.1 Myxococcus motility is driven by two distinct macromolecular systems第61-69页
            1.1.1 Twitching motility第61-64页
                1.1.1.1 Type-Ⅳ pili drive twitching motility第61-62页
                1.1.1.2 Twitching mechanism第62-64页
            1.1.2 Gliding motility第64-69页
                1.1.2.1 Gliding motility is powered by distributed motors第64-65页
                1.1.2.2 The gliding motility machinery第65-69页
    2. Spatial regulation of the motility systems by the Frz two-component system in Myxococcus xanthus第69-75页
        2.1 Biased random walk by regulated cellular reversals?第69-70页
        2.2 The Frz-signal transduction pathway第70-72页
            2.2.1 Input into the Frz pathway第70-71页
            2.2.2 Output from the Frz pathway第71-72页
        2.3 Generating cellular reversals第72-73页
            2.3.1 Twitching motility reversals第72页
            2.3.2 Gliding motility reversals第72-73页
        2.4 Coordinating cellular reversals第73-75页
RESULTS第75-152页
    PART 1:DYNAMIC POLARITY SWITCH BY SMALL GTPASE IN M.XANTHUS第76-106页
        1. MgIA is central regulator of dynamic reversals第77-106页
            ARTICLE 1第79-106页
    PART 2.POLAR TARGETING OF THE MOTILITY PROTEINS第106-152页
        2. RomR regulates the localization of MgIAB and may link MgIAB to Frz第107-152页
            ARTICLE 2第110-152页
DISCUSSION&PERSPECTIVE第152-166页
    1. How does MgIA synchronize the two motility systems?第153-157页
        1.1 The role of MgIA-GTP in cell motility第153页
        1.2 How does MgIA activate motility?第153-155页
            1.2.1 FrzS第153页
            1.2.2 AgIZ第153-154页
            1.2.3 Other downstream targets第154-155页
        1.3 Synchronizing directionalities of both A- and S- motilities第155-156页
            1.3.1 Directionality of S-motility第155页
            1.3.2 Di rectionality of A-motility第155-156页
            1.3.3 How to synchronize both motility systems?第156页
        1.4 Future approaches to answer these questions第156-157页
    2. How does a cell reverse?第157-163页
        2.1 What elicits a cell reversal?第157页
        2.2 An intricate localization interdependence network underlies the polarity axis第157-160页
            2.2.1 FrzS and AgIZ act downstream from MgIA,B and RomR第158页
            2.2.2 RomR,MgIB and MgIA regulate the polarity axis第158-160页
        2.3 Reversal switch and linkage with the upstream frz pathway第160-161页
            2.3.1 Role of RomR第160页
            2.3.2 Role of FrzZ第160-161页
        2.4 Current model of cell reversal and future questions to be add ressed第161-163页
    3. Future challenges and questions related to motility regulation第163-166页
        3.1 Integrated motility regulations in Myxococcus第163页
        3.2 A conserved role of MglAB in bacterial polarity?第163-164页
        3.3 Evolution of MgIAB regulation in Myxococcus第164页
        3.4 Towards the understanding of multicellular behaviors in Myxococcus第164-166页
APPENDICES第166-201页
    ARTICLE 3第167-184页
    ARTICLE 4第184-195页
    ARTICLE 5第195-201页
ACKNOWLEDGEMENTS第201-202页
REFERENCES第202-220页
Abstract第220页
学位论文评阅及答辩情况表第221页

论文共221页,点击 下载论文
上一篇:mHCN4基因转染犬MSCs心脏原位移植的实验研究
下一篇:大鼠黑质致密部多巴胺神经元的膜共振现象及其机制研究