| 中文摘要 | 第1-5页 |
| 英文摘要 | 第5-8页 |
| 1 绪论 | 第8-11页 |
| ·问题的提出及研究意义 | 第8-9页 |
| ·国内外研究现状 | 第9-10页 |
| ·本文的结构安排 | 第10-11页 |
| 2 独立分量分析理论 | 第11-23页 |
| ·引言 | 第11页 |
| ·传统线性变换 | 第11-14页 |
| ·基本独立分量分析 | 第14-17页 |
| ·统计独立性 | 第14页 |
| ·线性ICA的定义 | 第14-15页 |
| ·ICA模型的识别性 | 第15-16页 |
| ·ICA与主分量分析方法的关系 | 第16页 |
| ·ICA的应用 | 第16-17页 |
| ·独立分量分析算法 | 第17-22页 |
| ·引言 | 第17页 |
| ·数据预处理 | 第17-18页 |
| ·算法 | 第18页 |
| ·非线性去相关算法 | 第18页 |
| ·最大似然或信息最大估计算法(infomax) | 第18-19页 |
| ·非线性PCA算法 | 第19页 |
| ·神经单个单元学习准则 | 第19页 |
| ·其它神经自适应算法 | 第19页 |
| ·快速ICA(FICA)算法 | 第19-21页 |
| ·基于张量算法 | 第21-22页 |
| ·加权协方差法 | 第22页 |
| ·算法选取 | 第22页 |
| ·本章小结 | 第22-23页 |
| 3 盲信号分离的理论基础 | 第23-34页 |
| ·盲分离的建模 | 第23-24页 |
| ·盲分离问题的可解性和模糊性 | 第24-25页 |
| ·盲分离的估计原理和独立性概念 | 第25-26页 |
| ·熵、差熵和负熵 | 第26-28页 |
| ·互信息和Kullback-Leibler散度的概念 | 第28-30页 |
| ·互信息作为目标函数的优化 | 第30-31页 |
| ·高阶累积量 | 第31-32页 |
| ·熵和负熵的近似 | 第32-33页 |
| ·本章小结 | 第33-34页 |
| 4 盲信号分离的模糊神经网络方法 | 第34-40页 |
| ·算法的提出 | 第34-35页 |
| ·模糊神经网络的原理及设计 | 第34页 |
| ·盲信号分离的模糊神经网络结构 | 第34-35页 |
| ·统计独立性的度量 | 第35-37页 |
| ·对比函数的选取和简化 | 第37-40页 |
| ·展开式 | 第37-39页 |
| ·Edgeworth展开 | 第39-40页 |
| 5 基于模糊神经网络的ICA对于盲信号分离的应用研究 | 第40-55页 |
| ·统计独立准则 | 第40页 |
| ·边缘熵的确定 | 第40-42页 |
| ·激活函数 | 第42-44页 |
| ·ICA学习算法 | 第44-45页 |
| ·等变化性质 | 第45-46页 |
| ·稳定性分析 | 第46-47页 |
| ·收敛性因素 | 第47-48页 |
| ·模糊神经系统的设计 | 第48-50页 |
| ·计算机实验 | 第50-54页 |
| ·本章小结 | 第54-55页 |
| 6 结束语 | 第55-56页 |
| 致谢 | 第56-57页 |
| 参考文献 | 第57-61页 |
| 附录 | 第61-62页 |
| 独创性声明 | 第62页 |
| 学位论文版权使用授权牛 | 第62页 |