Abstract | 第4-6页 |
Acknowledgement | 第7-18页 |
Nomenclature | 第18-21页 |
1 Gradual development in Solar Thermal Power GenerationSystem | 第21-45页 |
1.1 Introduction | 第22-24页 |
1.2 Development of ORC | 第24-25页 |
1.3 Coupling of ORC with solar energy | 第25-26页 |
1.4 Recent research in thermal power generation systems using ORC | 第26-35页 |
1.4.1 Organic Rankine cycle | 第26-30页 |
1.4.2 Solar collectors coupling with ORC | 第30-33页 |
1.4.3 Thermal energy storage | 第33-35页 |
1.5 Scientific Issues and Innovative Features of the Dissertation | 第35-37页 |
References | 第37-45页 |
2 Effect of working fluids on the performance of a noveldirect vapor generation solar organic Rankine cycle systemembedded with phase change material storage | 第45-73页 |
2.1 System configuration | 第52-54页 |
2.2 Thermodynamic modeling | 第54-56页 |
2.3 Results and discussions | 第56-66页 |
2.3.1 Effect of critical temperature on ORC efficiency at givenevaporation temperature | 第56-57页 |
2.3.2 Effect of critical temperature on optimum evaporationtemperature and maximum thermal efficiency at a given solar radiation | 第57-60页 |
2.3.3 Effect of critical temperature on collector efficiency at givenevaporation temperature and solar radiation | 第60-62页 |
2.3.4 Effect of critical temperature on the thermal efficiency of thesystem at given evaporation temperature and solar radiation | 第62-65页 |
2.3.5 Efficiency comparison between solar ORCs with DVG and HTF | 第65-66页 |
2.4 Conclusion | 第66-68页 |
References | 第68-73页 |
3 Modeling of organic Rankine cycle efficiency withrespect to the equivalent hot side temperature | 第73-103页 |
3.1 Derivation of the equivalent hot side temperature | 第75-77页 |
3.2 New models for the ORC | 第77-79页 |
3.2.1 Irreversible ORC efficiency with respect to T_(EHST) | 第77-78页 |
3.2.2 The ratio of the pump power and the expander power (a-value) | 第78-79页 |
3.2.3 New ORC efficiency model by approximating T_(ECST) anda-value | 第79页 |
3.3 Error analysis of the new ORC efficiency model | 第79-82页 |
3.3.1 Error contributed by the approximation of a-value | 第79-80页 |
3.3.2 Error contributed by the approximation of T_(ECST) | 第80-81页 |
3.3.3 Error counteraction by the approximation of a-value and T_(ECST) | 第81-82页 |
3.4 Results and discussion | 第82-94页 |
3.4.1 Influence of the equivalent hot side temperature on the ORCefficiency under different conditions | 第82-87页 |
3.4.2 Comparison among the equivalent hot side temperature andboiling point temperature, critical temperature, Jacobs number, and Figureof Merit | 第87-90页 |
3.4.3 The quantitative relationship between ORC efficiency and theequivalent hot side temperature | 第90-94页 |
3.5 Case study | 第94-96页 |
3.6 Conclusion | 第96-98页 |
References | 第98-103页 |
4 Modeling, simulation, and comparison of phase changematerial storage based direct and indirect solar Organic Rankinecycle systems | 第103-133页 |
4.1 Introduction | 第103-108页 |
4.1.1 System configurations | 第106-108页 |
4.1.2 Climatic Data of Islamabad-Pakistan | 第108页 |
4.2 Thermodynamic modeling | 第108-112页 |
4.2.1 Solar radiation | 第108-109页 |
4.2.2 Solar collectors | 第109页 |
4.2.3 Phase change material storage | 第109-112页 |
4.3 Operation and control of both systems | 第112-113页 |
4.4 Validation of the Computational Model | 第113-115页 |
4.5 Organic Rankine cycle | 第115-117页 |
4.6 Results and Discussions | 第117-127页 |
4.6.1 Performance of the hottest week | 第118-122页 |
4.6.2 Performance of the coldest week | 第122-123页 |
4.6.3 Performance over the month | 第123-127页 |
4.7 Conclusion | 第127-128页 |
References | 第128-133页 |
5 Thermodynamic comparison between novel andconventional heat pipe evacuated tube collectors used for solarorganic Rankine cycle application, an experimental study | 第133-161页 |
5.1 Introduction | 第133-137页 |
5.1.1 Design layout of HPETC | 第135-137页 |
5.2 Thermodynamic modeling of HPETC | 第137-144页 |
5.3 A thermodynamic model of organic Rankine cycle | 第144-145页 |
5.4 Results and discussions | 第145-155页 |
5.5 Conclusion | 第155-157页 |
References | 第157-161页 |
List of Publications included in the dissertation | 第161页 |