首页--交通运输论文--公路运输论文--桥涵工程论文--桥梁构造论文--墩台结构(下部结构)论文--桥墩论文

基于试验的矩形空心墩抗震性能研究

摘要第5-7页
ABSTRACT第7-8页
List of Contents第9-15页
List of Figures第15-22页
List of Table第22-23页
Chapter One Introduction第23-28页
    1.1 Introduction第24-25页
    1.2 Methodology of This Research第25-26页
    1.3 Objectives of Research第26页
    1.4 Thesis Organization and Presentation第26-28页
Chapter Two Literature Review第28-72页
    2.1 Introduction第29-30页
    2.2 Earthquake Phenomena第30页
    2.3 Seismic Design of Reinforced Concrete Bridges第30-39页
        2.3.1 Pier Ductility Design Theory第30-31页
        2.3.2 Seismic Response Analysis Method第31-33页
        2.3.3 Bridge Seismic Design第33-34页
        2.3.4 Calculate the Ductility Capacity第34-37页
        2.3.5 Two-Level Performance-Based Design第37-38页
        2.3.6 Elastic vs. Ductile Design第38-39页
        2.3,7 Capacity Design Approach第39页
    2.4 Earthquake Damage to Bridges第39-51页
        2.4.1 Damage to Substructures in Column第42-43页
        2.4.2 Reinforced Concrete Columns Failures第43-51页
            2.4.2.1 Flexural Failur第43-45页
            2.4.2.2 Shear Failure第45-46页
            2.4.2.3 Splices Failur第46-48页
            2.4.2.4 Anchorage Failure第48-51页
    2.5 Hollow Bridges Piers第51-56页
    2.6 Type of Hollow Piers Section and Previous Researches第56-71页
        2.6.1 Hollow Circle Piers第60-67页
        2.6.2 Hollow Square Piers第67-71页
    2.7 Summary第71-72页
Chapter Three Rectangular Hollow pier design of the seismic test第72-87页
    3.1. Introduction第73页
    3.2. Model design第73-76页
    3.3. Model making第76页
    3.4. Material characteristics第76-78页
        3.4.1 Reinforced concret第76-78页
        3.4.2 Concrete第78页
    3.5 Loading System And Test Methods第78-82页
    3.6 The Experimental Test第82-86页
        3.6.1 Design Of Strain Measurement Points第82-85页
            3.6.1.1 Strain gage pasted第82-85页
        3.6.2 Displacement Measuring Point Design第85-86页
    3.7 Summery第86-87页
Chapter Four Results of Cyclic Loading Test第87-148页
    4.1 Cyclic Loading Test and Failure Modes第88-89页
    4.2 Morphological observation damage第89-97页
        4.2.1 Specimen HP 11-A1第89-92页
        4.2.2 Specimen HP 11-A2第92-95页
        4.2.3 Specimen HP 11-A3第95-96页
        4.2.4 Specimen HP 16-A2第96-97页
    4.3 Speciation Analysis of damage第97-98页
    4.4 The Experimental Results第98-121页
        4.4.1 Hysteretic Curves第98-104页
        4.4.2 Energy Dissipation Capacity第104-114页
        4.4.3 Stiffness Characteristic第114-118页
        4.4.4 Strength Degradation Characteristics第118-121页
    4.5 Skeleton Curve第121-123页
    4.6 Steel Strain第123-144页
        4.6.1 Specimen HP11-A1第123-128页
        4.6.2 Specimen HP11-A2第128-134页
        4.6.3 Specimen HP11-A3第134-140页
        4.6.4 Specimen HP16-A2第140-144页
    4.7 Pier Displacement Analysis第144-147页
    4.8 Summary第147-148页
Chapter Five OpenSEES simulation of hysteretic behavior第148-191页
    5.1 Introduction第149-150页
    5.2 OpenSEES Program Description第150-156页
        5.2.1 OpenSEES Overview第150-153页
            5.2.1.1 OpenSEES The main features第151-152页
            5.2.1.2 OpenSEES Basic Components And Functions第152-153页
        5.2.2 OpenSEES Modeling and Analysis第153-156页
    5.3 Fiber Beam Element Calculation Principle第156-165页
        5.3.1 Basic Assumptions Elastoplastic Fiber Beam Element第156-157页
        5.3.2 The Composition Of Fiber Beam Element Model第157-158页
        5.3.3 Fiber Element Model of Flexibility Method第158-159页
        5.3.4 N-R Iterative Method Based on The Fiber Beam Element第159-165页
    5.4 Numerical analysis of hysteretic behavior of bridge pier model第165-184页
        5.4.1 Material model第165-180页
            5.4.1.1 Concrete model第165-173页
                5.4.1.1.1 Concrete02 material model第167-170页
                5.4.1.1.2 Concrete04 material model第170-173页
            5.4.1.2 Reinforcement model第173-180页
                5.4.1.2.1 Steel02 material model第173-180页
        5.4.2 Fiber cross-section model第180页
        5.4.3 Model of Reinforced Concrete Bridge Piers第180-183页
            5.4.3.1 Distribution of plastic model:NFB-CE第181-183页
            5.4.3.2 Concentrated plasticity model:B-HE第183页
        5.4.4 Boundary conditions and loading第183-184页
    5.5 The calculated results compared with the experimental results第184-190页
        5.5.1 Force-displacement Skeleton curve第186-187页
        5.5.2 Force-displacement hysteresis curve第187-190页
    5.6 Summary第190-191页
Chapter six Theoretical Calculation of Shear Capacity Of Pier第191-212页
    6.1 Introduction第192页
    6.2 Piers Shear Behavior第192-211页
        6.2.1 Design Considerations and Analytical Models第193-200页
            6.2.1.1 Priestley model第193-197页
            6.2.1.2 ATC 32 Model第197-198页
            6.2.1.3 Caltrans model第198-200页
            6.2.1.4 Chinese Model (Highway bridge seismic design details model)第200页
        6.2.2 Force-Displacement Envelope Response第200-204页
            6.2.2.1 Elastic Flexural Displacement第201页
            6.2.2.2 Plastic Flexural Displacement第201-202页
            6.2.2.3 Shear Displacement第202-204页
        6.2.3 Theoretical Calculation of Shear Capacity Of Pier第204-211页
    6.3 Summary第211-212页
Chapter seven Conclusion and Recommendation第212-219页
    7.1 Conclusions第213-218页
    7,2, Recommendations第218-219页
References第219-234页
Acknowledgements第234页

论文共234页,点击 下载论文
上一篇:济阳坳陷第三系储层预测模式优化集成研究
下一篇:硅/锗纳米线热电性能的理论研究