采用学习曲线法的火电厂碳捕集系统分阶段优化配置
【摘要】:全球气候变暖严重影响了人类社会的可持续发展,减少二氧化碳为首的温室气体排放能有效遏制这一趋势。火力发电是我国主要的电能生产方式,碳排放量巨大,将传统火电厂改造成为碳捕集电厂,是实现高效率、大规模碳减排的理想手段。在当前碳捕集技术发展不成熟的阶段,研究如何合理地对原有火电厂进行碳捕集系统配置具有十分重要的意义。论文对三种主要的碳捕集系统的工作原理进行了介绍,简要分析了火电厂进行碳捕集系统改造之后的运行特性变化和影响碳捕集系统配置的相关因素;重点阐述了学习曲线方法的基本原理,分析了其在能源领域的应用情况。基于碳捕集技术与燃煤机组烟气脱硫技术具有类似的学习特性,从燃煤机组烟气脱硫技术历史数据出发,分析得出了相应的学习曲线模型,将该学习曲线模型类比应用于碳捕集系统的成本分析,以预测碳捕集技术成本的发展变化趋势;同时对传统火电厂的发电成本、发电效率等指标进行了分析,对改造之后的碳捕集电厂相应指标的变化进行了量化,根据量化后的指标,结合碳捕集技术在示范阶段、推广阶段、商业化运营阶段的技术成本变化趋势,建立了以综合各阶段系统造价、运行维护费用、运行能耗费用的总投资费用最小为目标,满足各阶段减排指标约束、总减排量约束的碳捕集系统分阶段优化配置模型,并采用离散粒子群算法求解模型。通过算例仿真,得到了规划期内火电厂碳捕集系统分阶段最优配置方案,并对各阶段总投资费用、系统造价、运行维护费用、运行能耗费用进行了分析,求解出改造之后的发电成本增量和发电效率的损失。学习曲线模型对碳捕集技术各阶段的技术成本进行了预测,可以有效防止无规划的碳捕集系统配置带来的浪费。同时所建立的碳捕集系统分阶段优化配置模型,可以为决策者提供一条既满足阶段内碳减排指标,又能使总投资最少的途径,具有一定的工程实践意义。
【关键词】:碳捕集技术 学习曲线 分阶段 优化配置 离散粒子群算法
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM621