首页--数理科学和化学论文--化学论文--高分子化学(高聚物)论文

Self-crosslinking Hyperbranched Polymers with Quaternary Amine End-groups

摘要第5-6页
Abstract第6-7页
1. Self-Crosslinked Hyperbranched Polymers第17-45页
    1.1. Introduction第17-19页
    1.2. Crosslinking第19-20页
        1.2.1. Self-crosslinking第19-20页
    1.3. Self-crosslinking approaches第20-23页
        1.3.1. Friedel-Crafts alkylation第20-21页
        1.3.2. Free Radical Coupling第21页
        1.3.3. Self-crosslinking in quaternized polymers第21-23页
            1.3.3.1. Azide assisted self-crosslinked quaternized membrane第21-22页
            1.3.3.2. Self-crosslinked AEMs by bromination of the benzylmethyl-containingpoly(sulfone)s第22-23页
    1.4. Quaternization of Hyperbranched polymers第23-24页
    1.5. Hyperbranched polymers as crosslinkers第24-29页
        1.5.1. Hyperbranched polyester第24-25页
        1.5.2. Hyperbranched polyether第25-26页
        1.5.3. Hyperbranched poly (amino ester)第26-27页
        1.5.4. Hyperbranched polysiloxane (HPSiO)第27-28页
        1.5.5. Hyperbranched poly(ethyleneimine)第28-29页
    1.6. Applications第29-34页
        1.6.1. Thermal stability第29-31页
        1.6.2. Mechanical stability第31-33页
        1.6.3. Flame retardants第33页
        1.6.4. Coatings第33-34页
        1.6.5. Additives and Modifiers第34页
    References第34-45页
Thesis organization第45-46页
Aims and objectives第46-47页
2. Quaternized Hyperbranched Polyvinylbenzylchloride asCrosslinker第47-73页
    2.1 Introduction第47-48页
    2.2 Experimental details第48-52页
        2.2.1. Materials第48-49页
        2.2.2. Synthesis and quatemization of HBPVBC第49-50页
        2.2.3. Preparation of crosslinked membranes第50-51页
        2.2.4. Gel fractions (GF) analysis第51页
        2.2.5. Effects of solvent and temperature on swelling ratio (S_R)第51页
        2.2.6. Instrumentations第51-52页
    2.3 Results and discussion第52-65页
        2.3.1. Structural characterizations第52-54页
        2.3.2. Gel fractions (GF) and elemental analysis第54-55页
        2.3.3. Effect of quaternization and crosslinking on thermal properties第55-58页
        2.3.4. Effects of Solvent and temperature on swelling ratio第58-61页
        2.3.5. Water uptake (WU)第61-62页
        2.3.6. Mechanical analysis第62-63页
        2.3.7. TGA analysis第63-65页
    2.4 Conclusion第65-66页
    References第66-73页
3. Effect of Different Quaternary Groups on Crosslinking Densityof Quaternized Hyperbranched Polyvinylbenzylchloride第73-85页
    3.1 Introduction第73-74页
    3.2. Experimental details第74-76页
        3.2.1. Synthesis of different crosslinked quaternized polyvinylbenzylchloride第74-75页
        3.2.2. Gel fractions analysis第75页
        3.2.3. Effects of solvent and temperature on swelling ratio第75页
        3.2.4. Water uptake (WU)第75页
        3.2.5. Thermo-gravimetric analysis (TGA)第75页
        3.2.6. Zeta Potential and average particle size measurements第75-76页
    3.3 Results and discussion第76-80页
        3.3.1. Thermal stability第76-77页
        3.3.2. Gel fractions第77页
        3.3.3. Effect of solvents第77-78页
        3.3.4. Effect of temperature第78-79页
        3.3.5. Water uptake (WU)第79-80页
        3.3.6. Zeta potential and average particle size第80页
    3.4. Conclusion第80-81页
    References第81-85页
4. Importance of Lignocellulose Biomass Materials in Chemicalsand Polymer Industry第85-109页
    4.1 Introduction第85-86页
    4.2. Composition of biomass materials第86-88页
    4.3 Relationship of chemical structure and produced energy of biomass materials第88-89页
    4.4. Thermal decomposition of biomass materials第89-90页
    4.5. Thermal stability of biomass components第90-91页
    4.6. Applications第91-97页
        4.6.1. Medical and pharmaceutical applications第91-92页
        4.6.2. Water treatment第92页
        4.6.3. As a Catalyst第92-94页
        4.6.4. In Chemical industry第94-95页
        4.6.5. Rubber polymer industry第95-96页
        4.6.6. Polymer Industry第96-97页
    Challenges and possible solutions第97-98页
    References第98-109页
5. Lignocellulosic Biomass Materials as a Sustainable Platform forChemical and Polymer Production第109-131页
    5.1. Introduction第109-110页
    5.2. Thermal behavior and pyrolytic products analysis第110-111页
    5.3. Banana peel (BP) as lignocellulosic biomass material第111页
    5.4. Chemical structure第111-113页
    5.5. Thermal behavior第113-114页
    5.6. Pyrolytic products analysis第114-118页
    5.7. Effect of temperature on evolved products concentration第118-119页
    5.8. Canola residue (CR) as lignocellulosic biomass material第119-120页
    5.9. Pyrolytic products analysis第120-124页
    5.10. Effect of temperature on pyrolytic products第124-125页
    5.11. Conclusion第125-126页
    References第126-131页
General conclusion第131-132页
Future perspectives第132-133页
Acknowledgements第133-134页
List of Publications第134页

论文共134页,点击 下载论文
上一篇:Design and Development of Novel Nanocatalysts;A Key Tool Towards Sustainability
下一篇:GSVD的分布特性及其在MIMO预编码中的应用研究