首页--数理科学和化学论文--化学论文--分析化学论文

表面增强拉曼活性纳米探针的制备及其在单细胞检测与成像中的应用

摘要第11-13页
Abstract第13-15页
Chapter 1. Introduction第16-50页
    1.1 Single cell analysis第16-17页
    1.2 Cutting edge techniques for single cell analysis第17-21页
        1.2.1 Flourescence spectroscopy第17-19页
        1.2.2 Surface Enhanced Raman Spectroscopy (SERS)第19-21页
    1.3 Plasmonic substrates第21-23页
        1.3.1 Various geometrical platforms for SERS第21-22页
        1.3.2 Metal nanoparticles assemblies for SERS第22-23页
    1.4 Application of Raman spectoscopy in single sell ananlysis第23-26页
        1.4.1 Stem cells characterization第23-24页
        1.4.2 Pharmaceutical applications第24-25页
        1.4.3 Diagnostic applications第25-26页
    1.5 Overview of SERS nanoprobes for single cell analysis第26-27页
    1.6 Types of nanoprobes for intracellular SERS第27-33页
        1.6.1 SERS colloidal nanoparticle第27-30页
            1.6.1.1 Silver nanoparticles第27-28页
            1.6.1.2 Gold nanoparticles第28页
            1.6.1.3 Core-shell nanoparticles第28-29页
            1.6.1.4 Limitations of nanoparticles第29页
            1.6.1.5 Overcoming the limitations第29-30页
        1.6.2 Fixed confugration SERS nanoprobes第30-33页
            1.6.2.1 Fiber-optics-based SERS nanoprobes第30页
            1.6.2.2 Cantilever-based SERS nanoprobes第30-31页
            1.6.2.3 Tip-enhanced Raman spectroscopy第31页
            1.6.2.4 Carbon nanotube-based SERS nanoprobes第31-32页
            1.6.2.5 Nanopipette-based SERS prbes第32-33页
    1.7 Mechanics of cell penetration第33-34页
    1.8 Cell viability of nanoprobe detection第34-35页
    1.9 Interpretation of intracellular SERS spectra第35-38页
        1.9.1 Labeled-SERS approch第35-36页
        1.9.2 Label-free SERS approch第36-38页
    1.10 Objectives of current work第38-40页
    References第40-50页
Chapter 2. Organic Cyanide Decorated SERS Active Glass Nanopipette for Fe~(3+) and Hemeproteins Detection in Single Cells第50-82页
    2.1 Introduction第51-54页
    2.2 Experimental section第54-61页
        2.2.1 Reagents and Materials第54页
        2.2.2 Instrumentation第54-55页
        2.2.3 Fabrication of nanoprobe第55-56页
            2.2.3.1 Fabrication of glass nanaopipette第55页
            2.2.3.2 Fabrication of SERS active nanoprobe第55-56页
            2.2.3.3 MBN funtionalization on SERS nanoprobe第56页
        2.2.4 Optimization of SERS nanoprobe第56页
        2.2.5 In-vitro detection by SERS nanoprobe第56-57页
        2.2.6 Optimization of detection time for SERS nanoprobe第57页
        2.2.7 Measurement of binding constant第57-58页
        2.2.8 Selectivity of SERS nanoprobe第58-59页
        2.2.9 Reusability of SERS nanoprobe第59页
        2.2.10 Reproducability of SERS nanoprobe第59-60页
        2.2.11 Stability of SERS nanoprobe第60页
        2.2.12 Intracellular iron (Fe~(3+))detection in HeLa cells第60-61页
    2.3 Results and Discussion第61-78页
        2.3.1 Characterization of SERS nanoprobe第61-64页
        2.3.2 Calculation of SERS enhancement factor第64-66页
        2.3.3 Mechanism of dual peak behavior of MBN第66-67页
        2.3.4 Detection of target molecules (Fe~(3+)/oxy-Hb)第67-69页
        2.3.5 Validation of nanoprobe for iron sensing第69-71页
        2.3.6 Selectivity of SERS nanoprobe第71-74页
        2.3.7 Reversibility of SERS nanoprobe第74-75页
        2.3.8 Reproducibility of SERS nanoprobe第75页
        2.3.9 Stability of SERS nanoprobe第75-76页
        2.3.10 Detection of intracellular iron(Fe~(3+))第76-78页
    2.4 Conclusion第78页
    References第78-82页
Chapter 3. A Glass Nanopipette-based SERS Aptasensor for Subcellular Localization of Cancer Biomarker in Single Cells第82-115页
    3.1 Introduction第83-86页
    3.2 Experimental Section第86-93页
        3.2.1 Reagents and Materials第86-87页
        3.2.2 Instrumentation第87-88页
        3.2.3 Preperation of Raman nanotags第88页
            3.2.3.2 Immbilization of cDNA and MBN on AgNPs第88页
        3.2.4 Fabrication of SERS nanoprobe第88-89页
            3.2.4.1 Fabrication of glass nanopipette第88-89页
            3.2.4.2 Preperation of Au-coated nanoprobe第89页
            3.2.4.3 Immobilization of aptamers on Au nanoprobe第89页
        3.2.5 Optimization of conditions第89-90页
            3.2.5.1 Optimization of Raman nanotags第89-90页
            3.2.5.2 Optimization of SERS nanoprobes第90页
        3.2.6 In -vitro Nucleolin (NCL) detection assay第90-91页
            3.2.6.1 Hybridization of Raman nanotags on SERS nanoprobe第90页
            3.2.6.2 Hybridized SERS nanoprobes for NCL detection第90-91页
        3.2.7 Binding constant measurement第91页
        3.2.8 Selectivity test第91页
        3.2.9 Reproducability of SERS nanoprobes第91-92页
        3.2.10 Cellular analysis第92-93页
            3.2.10.1 Cell culture第92页
            3.2.10.2 SERS nanoprobe for single cell analysis第92页
            3.2.10.3 Preperation of cytoplasmic and nuclear extracts第92-93页
    3.3 Results and Discussion第93-109页
        3.3.1 Characterization of SERS nanoprobe and Raman nanotags第93-97页
        3.3.2 Optimization of conditions第97-99页
        3.3.3 Signal distribuition via SERS mapping第99-100页
        3.3.4 NCL detection第100-102页
        3.3.5 In-vitro binding affinity of SERS nanoprobe第102-103页
        3.3.6 Selectivity SERS nanoprobe第103-104页
        3.3.7 Reproducability第104-105页
        3.3.8 Subcellular localization of NCL in single cells第105-106页
        3.3.9 Spatial distribuition of NCL in single cells第106-109页
    3.4 Conclusion第109-110页
    References第110-115页
Chapter 4. Real-time SERS imaging of Dynamic Pathway of Iron Recycling in Single Macrophage by Organic Cyanide decorated Nanotags第115-130页
    4.1 Introduction第116-118页
    4.2 Experimental Section第118-123页
        4.2.1 Reagents and Instruments第118-120页
        4.2.2 Fabrication of SERS nanotags第120-121页
            4.2.2.1 Synthesis of silver nanoparticles第120页
            4.2.2.2 Immbilization of MBN and SH-PEG on AgNPs第120页
            4.2.2.3 Optimization of MBN immbilization第120-121页
        4.2.3 In-vitro SERS response of nanotags第121页
        4.2.4 Red Blood Cells labeling and imaging第121-122页
        4.2.5 Erythrophagocytosis assay第122-123页
    4.3 Results and Discussion第123-127页
        4.3.1 Characterization of SERS nanotags第123-124页
        4.3.2 SERS response of fabricated nanotags第124-125页
        4.3.3 Red Blood Cells imaging第125-126页
        4.3.4 Phagocytosis assay of RBCs by macrophage第126-127页
    4.4 Conclusion and Future perspectives第127-128页
    References第128-130页
Conclusion and Outlook第130-132页
攻读博士位期间发表的学术论文第132-133页
Acknowledgements第133-135页

论文共135页,点击 下载论文
上一篇:一类平行原始对偶算法及其在鞍点问题中的应用
下一篇:几种纳米复合氧化物阻变器件的原子层沉积制备及其存储特性和忆阻功能的研究