首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

Super Resolution Imaging and Its Applications

Abstract第6-7页
Dedication第8-9页
TABLE OF CONTENTS第9-13页
List of Figures第13-15页
List of Tables第15-16页
List of Abbreviations第16-19页
CHAPTER 1 INTRODUCTION第19-31页
    1.1 THE DEFINITION OF RESOLUTIGN第20-21页
        1.1.1 Pixel Resolution第20页
        1.1.2 Spatial Resolution第20-21页
        1.1.3 Brightness Resolution第21页
        1.1.4 Temporal Resolution第21页
        1.1.5 Spectral Resolution第21页
    1.2 MOTIVATION FOR USING SUPER RESOLUTION METHODS第21-23页
        1.2.1 Different Ways Resolution Enhancement and Limits on Them第22-23页
            1.2.1.1 Hardware Solution第22-23页
            1.2.1.2 Software Solution第23页
    1.3 DEFINITION OF SUPER RESOLUTION第23-28页
        1.3.1 What is Super Resolution?第24-26页
        1.3.2 Applications of Super Resolution第26-27页
        1.3.3 3 Key Concepts about Super Resolution第27-28页
    1.4 AUTHOR'S CONTRIBUTION第28-29页
    1.5 ORGANIZATION OF THESIS第29-30页
    REFERENCES第30-31页
CHAPTER 2 INTRODUCTION TO IMAGE SUPER RESOLUTION第31-76页
    2.1 INTRODUCTION第31-32页
    2.2 LOW RESOLUTION INPUT IMAGES第32-33页
    2.3 OBSERVATION MODEL FOR SUPER RESOLUTION IMAGE第33-35页
    2.4 MULTI-IMAGE SR TECHNIOUES第35-46页
        2.4.1 Frequeney Domain Techniques第36-39页
            2.4.1.1 Alias Removal Reconstruction Methods第36-37页
            2.4.1.2 Recursive Least Square Method第37-38页
            2.4.1.3 Recursive Total Least Square Method第38页
            2.4.1.4 Two Phase SR Approach by Tom and Katsaggelos第38页
            2.4.1.5 Wavelet Based SR reconstruction Models第38-39页
        2.4.2 Spatial Domain Techniques第39-46页
            2.4.2.1 Non-uniform Interpolation第39-40页
            2.4.2.2 Projection onto Convex Sets(POCS)第40-42页
            2.4.2.3 Iterative Back-projection(IBP)第42-43页
            2.4.2.4 Maximum A-posteriori(MAP)第43-44页
            2.4.2.5 MAP/ML-POCS Hybrid Super resolution第44-45页
            2.4.2.6 Optimal and Adaptive Filtering SR Technique第45-46页
            2.4.2.7 Tikhonov-Arsenin Regularization Method第46页
    2.5 SINGLE IMAGE SUPER RESOLUTION TECHNIOUES第46-55页
        2.5.1 Freeman et al.fast NN-based Method第47-52页
            2.5.1.1 Training Set Generation第48-49页
            2.5.1.2 Markov Network Algorithm第49-50页
            2.5.1.3 One Pass Algorithm第50-52页
        2.5.2 Chang et al.LLE Method第52-54页
        2.5.4 Super Resolution from Sparse Representation ofpatches ofLR Images第54-55页
    2.6 EXPERIMENTS AND SIMULATION RESULTS第55-57页
    2.7 QUALITY ASSESSMENT METRICS FOR SUPER RESOLUTION OF IMAGES第57-67页
        2.7.1 Subjectivc Test Methods第57-58页
        2.7.2 Objective Test Methods第58-59页
            2.7.2.1 Full Reference Quality Assessment Metrics第58-59页
        2.7.3 Our Methodology第59-60页
        2.7.4 Quality Metric Based Comparison of SR Techniques第60-61页
        2.7.5 Noise Effect on Image Quality第61-65页
        2.7.6 Number of Images Effect on the Image Quality第65-66页
        2.7.7 Effect of Number of Iterations on Image Quality第66-67页
    2.8 SUMMARY第67-68页
    REFERENCES第68-76页
CHAPTER 3 ADEQUATE AND REALISTIC STRATEGY FOR SUPER RESOLUTION IMAGING第76-85页
    3.1 INTRODUCTION第76页
    3.2 RELATED WORK第76-77页
    3.3 PROPOSED METHOD第77-82页
        3.3.1 Key Steps of Our Method第78-82页
    3.4 SIMULATION RESULTS第82-83页
    3.5 SUMMARY第83-84页
    REFERENCES第84-85页
CHAPTER 4 APPLYING NON-PARAMETRIC SUPER RESOLUTION TECHNIQUES IN RADAR FOROBJECT RECOGNITION第85-100页
    4.1 INTRODUCTION第85-86页
    4.2 RADAR第86-87页
    4.3 SIGNAL-TO-NOISE RATIO IN A RADAR SYSTEM第87页
    4.4 RADAR RESOLUTION第87-90页
        4.4.1 Range Resolution第88-89页
        4.4.2 Angular Resolution第89页
        4.4.3 Doppler Resolution第89-90页
    4.5 RADAR POINT SPREAD FUNCTION第90-91页
    4.6 OBJECT RECOGNITION USING SUPER RESOLUTION TECHNIQUES第91-95页
        4.6.1 Imaging Model第92页
        4.6.2 Super Resolution Algorithms第92-95页
            4.6.2.1 Matrix Inverse第93页
            4.6.2.2 Minimum Mean Square Error(MMSE)第93-94页
            4.6.2.3 Singular Value Decomposition(SVD)第94-95页
    4.7 COMPARISON AND SIMULATION RESULTS第95-97页
    4.8 SUMMARY第97页
    REFERENCES第97-100页
CHAPTER 5 A PROPOSED FUTURISTIC FRAMEWORK FOR IMAGE SUPER RESOLUTION IN THEMOBILE CLOUD COMPUTING PLATFORM第100-118页
    5.1 INTRODUCTION第100-101页
        5.1.1 Why we choose Mobile Cloud Computing第100-101页
    5.2 CLOUD COMPUTING第101-102页
    5.3 MOBILE CLOUD COMPUTING第102-107页
        5.3.1 What is Mobile Cloud Computing?第103页
        5.3.2 Architecture of MCC第103-105页
            5.3.2.1 Mobile Devices第104页
            5.3.2.2 Mobile Networks/Network Operators第104-105页
            5.3.2.3 Internet Service Provider(ISP)第105页
            5.3.2.4 Cloud Computing Infrastructure第105页
        5.3.3 Application of MCC第105-106页
        5.3.4 Advantages of Mobile Cloud Computing第106-107页
            5.3.4.1 Larger Storage Capacity and Effective sharing of Data第106页
            5.3.4.2 Save Battery Lifetime第106页
            5.3.4.3 Improved Security and Reliability第106-107页
            5.3.4.4 Network Bandwidth and Latency第107页
            5.3.4.5 Network Availability and Intermittency第107页
    5.4 RELATED WORK第107-109页
        5.4.1 Mobile Image Processing第107-109页
    5.5 PROPOSED FRAMEWORK第109-113页
        5.5.1 Research Motivation第109页
        5.5.2 Research Method第109-112页
        5.5.3 Experiment Performed and its Results第112-113页
    5.6 SUMMARY第113-114页
    REFERENCES第114-118页
CHAPTER 6 CONCLUSION AND FUTURE WORK第118-122页
    6.1 RESEARCH SUMMARY第118-120页
        6.1.1 Super Resolution第118-119页
        6.1.2 Target Recognition第119页
        6.1.3 A Proposed Futuristic Framework第119-120页
    6.2 RECOMMENDATIONS FOR FUTURE RESEARCH第120-122页
LIST OF PUBLICATIONS第122-123页
ACKNOWLEDGEMENTS第123-124页

论文共124页,点击 下载论文
上一篇:新型种间杂交南瓜自交系淀粉和类胡萝卜素合成的分子与生理机制研究
下一篇:腺病毒介导p21抑制视网膜新生血管生成的实验研究