首页--数理科学和化学论文--原子核物理学、高能物理学论文--高能物理学论文--粒子物理学论文--实验与测定论文

H→γγ Search and DPP Production Differential Cross Section Measurement at D(?)

Acknowledgements第4-6页
Abstract第6-8页
Selected publications by the author第9-14页
Contents第14-17页
List of Figures第17-30页
List of Tables第30-35页
Chapter 1 Introduction第35-49页
    1.1 Standard Model第35-39页
    1.2 Higgs production and decay at the Tevatron第39-44页
        1.2.1 SM Higgs production第39页
        1.2.2 Decays of the Higgs Boson第39-44页
    1.3 Direct photon pair production第44-49页
Chapter 2 Fermilab and D(?) detector第49-65页
    2.1 The Fermilab Accelerator System第49-52页
        2.1.1 Pre-accelerator,Linear Accelerator and Booster第49-50页
        2.1.2 Main Injector第50-51页
        2.1.3 Tevatron第51页
        2.1.4 Antiproton Source第51-52页
    2.2 D(?) Detector第52-65页
        2.2.1 Central Tracking System第53-56页
        2.2.2 Solenoid and Preshower第56-58页
        2.2.3 Calorimeter第58-64页
        2.2.4 Muon System第64-65页
Chapter 3 Photon identification第65-101页
    3.1 Vertex reconstruction第65-68页
    3.2 Reconstruct the EM object第68-71页
    3.3 Separation of jets and photons using Artifical Neural Network第71-72页
    3.4 Separation of electrons and photons第72-77页
    3.5 Photon ID efficiency第77-89页
        3.5.1 General ID efficiency第77-78页
        3.5.2 No-track matching efficiency第78-80页
        3.5.3 O_(NN) efficiency第80-89页
    3.6 Photon energy scale and resolution第89-101页
        3.6.1 Energy loss correction第90-93页
        3.6.2 Energy scale and offset第93-96页
        3.6.3 Energy resolution第96-98页
        3.6.4 Photon energy scale correction第98-101页
Chapter 4 H→γγ search第101-143页
    4.1 Data and Monte Caurlo samples第102-106页
    4.2 Event selection第106-107页
    4.3 Backgrounds第107-116页
        4.3.1 Drell-Yan Z/γ*→ee contributions第107-108页
        4.3.2 γ +jet and di-jet background第108-111页
        4.3.3 Direct photon pair production第111-116页
    4.4 Systematic uncertainties第116-118页
    4.5 Final event distributions and Limits第118-127页
        4.5.1 Final event distributions第118-123页
        4.5.2 Limit setting第123-127页
    4.6 Fermiphobic H→γγ search第127-143页
        4.6.1 Data,MC samples and Event selection第127-128页
        4.6.2 Backgrounds第128-134页
        4.6.3 Final event distributions and limits第134-143页
Chapter 5 Direct photon pair production differential cross sectionmeasurement第143-203页
    5.1 Review of previous Tevatron Run Ⅱ measurements第144-148页
    5.2 Data samples第148-149页
    5.3 Event selection and binning第149-154页
        5.3.1 Event selection and selection efficiencies第149-152页
        5.3.2 Binning第152-154页
    5.4 Acceptance第154-162页
    5.5 Backgrounds第162-164页
        5.5.1 Drell-Yan Z/γ*→ ee contributions第162页
        5.5.2 γ+jet and di-jet background第162页
        5.5.3 Di-photon purity第162-164页
    5.6 Photon energy scale correction第164-166页
    5.7 Systematics第166-169页
    5.8 Correction of theory for MPI and hadronization effects第169-175页
    5.9 Comparison with Theory第175-183页
    5.10 Closure tests第183-190页
    5.11 Measurement of double differential cross sections第190-203页
        5.11.1 Acceptances第190-192页
        5.11.2 Selection efficiencies第192页
        5.11.3 Diphoton purity第192-195页
        5.11.4 Double differential cross sections and comparison with theory第195-203页
Chapter 6 Conclusion第203-207页
Chapter 7 Bibliography第207-215页
Chapter 8 Appendices第215-260页
    8.1 Z/γ*→ee background第215-217页
    8.2 Photon energy scale第217-221页
    8.3 H pT reweighting第221-223页
    8.4 Fitting function from ONN-reversed sample第223-226页
    8.5 4×4 matrix background subtraction第226-231页
    8.6 Interpolated signal mass points第231-240页
    8.7 Bin-by-bin purity第240-242页
    8.8 Unfolded results using different re-weightings to data第242-250页
    8.9 Cross-check of diphoton purity using 2D template fitting第250-252页
    8.10 Systematic uncertainty for purity estimation第252-254页
    8.11 Systematic uncertainties for the 2D acceptance第254-257页
    8.12 Cross-check of background-subtracted data vs.fast MC simulation第257-260页

论文共260页,点击 下载论文
上一篇:套管挂密封总成下放工具的设计与研究
下一篇:Medium Access Control Protocols with Efficient Enhancement for Cognitive Radio Networks