首页--数理科学和化学论文--化学论文--物理化学(理论化学)、化学物理学论文

二氧化钛基光催化材料的可控制备及表征

摘要第5-7页
ABSTRACT第7-8页
CHAPTER 1 INTRODUCTION第13-43页
    1.1 BACKGROUND第13-17页
        1.1.1. Photocatalysis第14-15页
        1.1.2. Photocatalytic materials第15-17页
        1.1.3. Why TiO_2 as a photocatalyst?第17页
    1.2. FUNDAMENTAL PRINCIPLES OF SEMICONDUCTOR PHOTOCATALYSIS第17-24页
        1.2.1. Light absorption and charge carriers generation第17-19页
        1.2.2. Charge separation and transport第19-20页
        1.2.3. Charge trapping and recombination第20-21页
        1.2.4. Chemical reactions at the surface第21-22页
        1.2.5. Surface active sites第22-23页
        1.2.6. Photoexcitation mechanism and band edge position第23-24页
    1.3. PROGRESS IN TIO_2 PHOTOCATALYST:HISTORICAL DEVELOPMENT第24-26页
    1.4. TITANIUM DIOXIDE PROPERTIES第26-30页
        1.4.1. Structural properties of TiO_2第26-27页
        1.4.2. Surface properties第27-28页
        1.4.3. Electronic properties第28-29页
        1.4.4. Optical properties of TiO_2第29-30页
    1.5. MANIPULATION OF TIO_2 PROPERTIES第30-37页
        1.5.1. Semiconductor coupling第31-32页
        1.5.2. Metal/Semiconductor composites第32-36页
            1.5.2.1. Localized surface plasmon resonance effect第32-34页
            1.5.2.2. Plasmonic energy transfer mechanism第34-36页
        1.5.3. Morphological designing第36-37页
    1.6. LOW-DIMENSIONAL TIO_2 MATERIALS第37-40页
        1.6.1. Preparation of one-dimensional TiO_2第37-38页
        1.6.2. Preparation of two-dimensional TiO_2第38-39页
        1.6.3. Applications of TiO_2第39-40页
    1.7. OBJECTIVES AND SIGNIFICANCE OF THE PRESENT RESEARCH第40-43页
CHAPTER 2 EXPERIMENTAL METHODS第43-61页
    2.1. SYNTHESIS METHODS第43-52页
        2.1.1. Electrospinning第43-48页
            2.1.1.1. Introduction to electrospinning第43-45页
            2.1.1.2. Electrospinning processing第45-46页
            2.1.1.3. Electrospinning parameters influence on nanofibers第46-47页
            2.1.1.4. Use of nanofibers and related applications第47-48页
        2.1.2. Microwave-assisted technology第48-51页
            2.1.2.1. Beginning of microwave technology第48页
            2.1.2.2. Basic principles of microwave chemistry第48-50页
            2.1.2.3. Microwave heating vs.conventional heating第50-51页
        2.1.3. Hydrothermal method第51-52页
            2.1.3.1. Advantages of hydrothermal method第52页
    2.2. CHARACTERIZATION TECHNIQUES第52-58页
        2.2.1. X-ray powder diffraction(XRD)第52-54页
        2.2.2. Field emission scanning electron microscopy(FE-SEM)第54页
        2.2.3. Transmission electron microscopy(TEM)第54-55页
        2.2.4. Brunauer-Emmett-Teller(BET)surface area第55页
        2.2.5. UV-visible diffuse reflectance spectrum(DRS)第55-56页
        2.2.6. X-ray photoelectron spectroscopy(XPS)第56-57页
        2.2.7. Photoluminescence Spectroscopy(PL)第57-58页
    2.3. PHOTOCATALYTIC PERFORMANCE TEST第58-61页
        2.3.1. Photocatalytic reactor system第58-59页
        2.3.2. Target substrate第59页
        2.3.3. Photocatalytic degradation of MO第59页
        2.3.4. Intrinsic photocatalytic activity第59-61页
CHAPTER 3 ENHANCED INTRINSIC PHOTOCATALYTIC ACTIVITY OF TIO_2ELECTROSPUN NANOFIBERS BASED ON TEMPERATURE ASSISTEDMANIPULATION OF CRYSTAL PHASE RATIOS第61-80页
    3.1. INTRODUCTION第61-63页
    3.2. EXPERIMENTAL SECTION第63-66页
        3.2.1. Materials and methods第63-64页
        3.2.2. Synthesis of TiO_2 nanofibers第64页
        3.2.3. Characterization第64-65页
        3.2.4. Photocatalytic activity test第65-66页
    3.3. RESULTS AND DISCUSSIONS第66-75页
        3.3.1. Morphology of TiO_2 nanofibers第66-69页
        3.3.2. Structural properties of TiO_2 nanofibers第69-72页
            3.3.2.1. X-ray diffraction(XRD)第69-72页
        3.3.3. Photocatalytic degradation of methyl orange第72-75页
            3.3.3.1. Intrinsic photocatalytic activity第74-75页
    3.4. TIO_2 NANOFIBERS ANNEALED AT 600℃ WITH DIFFERENT HEATING RATES第75-79页
    3.5. CONCLUSIONS第79-80页
CHAPTER 4 PHOTOCATALYTIC PERFORMANCE OF MWCNTS/TIO_2NANOCOMPOSITES:CONVENTIONAL VS.MICROWAVE-ASSISTEDSYNTHESIS第80-91页
    4.1. INTRODUCTION第80-81页
    4.2. EXPERIMENTAL SECTION第81-82页
        4.2.1. Pretreatment of multi-walled CNTs第81页
        4.2.2. Synthesis of MWCNT-TiO_2 nanocomposites第81页
        4.2.3. Catalyst characterization第81-82页
        4.2.4. Evaluation of photocatalytic performance第82页
    4.3. RESULTS AND DISCUSSIONS第82-89页
        4.3.1. X-ray diffraction第82-84页
        4.3.2. Morphology第84-86页
        4.3.3. UV-Visible diffuse reflectance spectra第86页
        4.3.4. Photocatocatalytic activities of TiO_2 and MWCNT/TiO_2 composites第86-89页
        4.3.5. Mechanism of improved photocatalytic activity of TiO_2/MWCNTs composite第89页
    4.4. CONCLUSIONS第89-91页
CHAPTER 5 CONSTRUCTION OF NOVEL TERNARY AG/AGCL/TIO_2(B)NANOSHEETS PLASMONIC PHOTOCATALYST WITH ENHANCEDVISIBLE-LIGHT PHOTOCATALYTIC ACTIVITY第91-101页
    5.1. INTRODUCTION第91-92页
    5.2. EXPERIMENTAL SECTION第92-93页
        5.2.1. Synthesis of TiO_2(B) nanosheets第92页
        5.2.2. Synthesis of Ag/AgCl/TiO_2(B) nanosheets第92页
        5.2.3. Characterization第92-93页
        5.2.4. Photocatalytic activity evaluation第93页
    5.3. RESULTS AND DISCUSSION第93-99页
        5.3.1. Structural properties of catalysts第93-94页
        5.3.2. Morphology of catalysts第94-96页
        5.3.3. Photocatalytic performance evaluation第96-97页
        5.3.4. Optical properties of prepared catalyst第97-99页
        5.3.5. Proposed reaction mechanism for Ag/AgCl/TiO_2(B) photocatalytic system第99页
    5.4. CONCLUSIONS第99-101页
CHAPTER 6 SUMMERY AND CONCLUSIONS第101-103页
REFERENCES第103-125页
ACKNOWLEDGEMENT第125-126页
CURRICULUM VITAE第126-127页
PUBLICATIONS第127页

论文共127页,点击 下载论文
上一篇:无序态材料在极端条件下的表现行为
下一篇:SnO2基纳米颗粒结构、光学、介电和磁学性能研究